ANSWER
The simplest form of the ratio

is

EXPLANATION
The ratio given to us is

We can divide each term in ratio by the same number.
To find the ratio in the simplest form we divide the terms in the ratio by their highest common factor, which is

This implies that,

We simplify this to obtain,

The correct answer is C.
Alternatively,


This implies that,
Complete Question
If $12000 is invested in an account in which the interest earned is continuously compounded at a rate of 2.5% for 3 years
Answer:
$ 12,934.61
Step-by-step explanation:
The formula for Compound Interest Compounded continuously is given as:
A = Pe^rt
A = Amount after t years
r = Interest rate = 2.5%
t = Time after t years = 3
P = Principal = Initial amount invested = $12,000
First, convert R percent to r a decimal
r = R/100
r = 2.5%/100
r = 0.025 per year,
Then, solve our equation for A
A = Pe^rt
A = 12,000 × e^(0.025 × 3)
A = $ 12,934.61
The total amount from compound interest on an original principal of $12,000.00 at a rate of 2.5% per year compounded continuously over 3 years is $ 12,934.61.
0.4(420) = 4(420)/10
(0.4 is essentially 4/10)
1680/10 = 168
There are 168 sixth graders
90,180 is the same as R so it is