Answer:
-935160312
Step-by-step explanation:
Answer:



Step-by-step explanation:
Required
Which equals 

Collect like terms


Divide both sides by 2


Collect like terms


Divide both sides by 2


Collect like terms


Divide both sides by -2


Divide both sides by 2

Collect like terms



Divide both sides by 2

Collect like terms


Hence, the equations with the required solution are:



Answer:
The second answer choice is right
Step-by-step explanation:
To solve this problem, let us first assign variables. Let
us say that:
A = runner
B = cyclist
d = distance
v = velocity
time = t
The time in which the cyclist overtakes the runner is the
time wherein the distance of the two is the same, that is:
dA = dB
We know that the formula for calculating distance is:
d = v t
therefore,
vA tA = vB tB
Further, we know that tA = tB + 2, therefore:
vA (tB + 2) = vB tB
4 (tB + 2) = 14 tB
4 tB + 8 = 14 tB
10 tB = 8
tB = 0.8 hours = 48 min
Therefore the cyclist overtakes the runner after 0.8
hours or 48 minutes.
Answer:
-4
Step-by-step explanation:
-22-(6)(-9)/3
= -22 -(6) (-3)
= -22 +18
= -4