Answer:
I'd say you need to be more specific.
Step-by-step explanation:
"Different" doesn't tell you much.
Consider the equations ...
These equations are "different", but they are <em>dependent</em>.
_____
I'd mentally (or actually) put the equations in the same form and compare the coefficients of x and y. If they have different ratios, the system is independent and consistent.
If they have the same ratio, the system will not have a single solution. Whether there is no solution or an infinite number of solutions depends on the constant, which I would examine next.
The system above can be put in the form
In both cases, the ratio of the x coefficient to the y coefficient is 2/-1 = 4/-2 = -2. This means the lines are at least parallel, if not identical. The numbers in the second equation are all 2 times the numbers in the first equation, so the equations are <em>dependent</em>, and there are an infinite number of solutions. (Both describe the same line.)
If the second equation were 4x -2y = 1, then the two equations would be describing parallel lines, so they would be called <em>inconsistent</em>.
In 4 hours Zaps rental car charges $60 dollars and in 4 hours Easy car rental charges $59.5. So in 4 hours it is less expensive to rent from Easy car rental.
Firstly, we will draw figure
now, we will draw a altitude from B to DC that divides trapezium into rectangle and right triangle
because of opposite sides of rectangle ABMD are congruent
so,
DM=AB=9
CM=CD-DM
CM=18-9
CM=9
now, we can find BM by using Pythagoras theorem

now, we can plug values
we get


now, we can find area of trapezium

now, we can plug values
and we get


so, area of of the trapezoid is
..........Answer
Given:
The given arithmetic sequence is:

To find:
The recursive formula of the given arithmetic sequence.
Solution:
We have,

Here, the first term is -3. So,
.
The common difference is:



The recursive formula of an arithmetic sequence is:

Where, d is the common difference.
Putting
, we get

Therefore, the recursive formula of the given arithmetic sequence is
, where
.