Answer:
Gradient of A: 2
Gradient of B: -1
Step-by-step explanation:
Gradient = change in y/change in x
✔️Gradient of A using two points on line A, (2, 5) and (0, 1):
Gradient = (1 - 5)/(0 - 2) = -4/-2
Simplify
Gradient of A = 2
✔️Gradient of B using two points on line B, (0, 5) and (5, 0):
Gradient = (0 - 5)/(5 - 0) = -5/5
Simplify
Gradient of B = -1
Answer:
60 minutes
Step-by-step explanation:
Let the number of minutes be represented as x
For Plan A
Plan A charges $35 plus $0.25 per minute for calls.
$35 + $0.25 × x
35 + 0.25x
For Plan B
Plan B charges $20 plus $0.50 per minute for calls.
$20 + $0.50 × x
20 + 0.50x
For what number of minutes do both plans cost the same amount?
This is calculated by equating Plan A to Plan B
Plan A = Plan B
35 + 0.25x = 20 + 0.50x
Collect like terms
35 - 20 = 0.50x - 0.25x
15 = 0.25x
x = 15/0.25
x = 60 minutes.
Hence, the number of minutes that both plans cost the same amount is 60 minutes
Answer:
7 children
Step-by-step explanation:
$505-$115= $390
$390÷$65= 6
6+1= 7
Answer:
The intersection of both lines.
Answer:
A
Step-by-step explanation:
So that is a 90 degree angle and there is an angle of 30. 30-90 is 60. 60 divided by 4 is 15. So thus the answer is A,15.