The exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
<h3>Solving trigonometry identity</h3>
If an angle of measure 120 degrees intersects the unit circle at point (-1/2,√3/2), the measure of cos(120) can be expressed as;
Cos120 = cos(90 + 30)
Using the cosine rule of addition
cos(90 + 30) = cos90cos30 - sin90sin30
cos(90 + 30) = 0(√3/2) - 1(0.5)
cos(90 + 30) = 0 - 0.5
cos(90 + 30) = 0.5
Hence the exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
Learn more on unit circle here: brainly.com/question/23989157
#SPJ1
ummm well thats a good question
Step-by-step explanation: hold on let me think
g
ANSWER

EXPLANATION
To find a positive angle that is coterminal with

We add multiples of 2π until we get a positive angle that is less than one revolution,
We add to obtain,

This simplifies to,

This is the first positive angle that is coterminal with

and is less than one revolution.