Answer:
3 2/5
Step-by-step explanation:
8-3x4
ok well do 3x4 that is 12
so do 12 minus 8 which is 4. and 4 as a fraction is 2/5 so
do 6/2 plus 2/5
which is.....
.....
3 and 2/5
Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
Total number of Pizzas sampled = 344+391+155+185 = 1075
No. of Thick crust Pizzas in sample = 391
Proportion of Thick crust Pizzas in sample = 391/1075
Expected number of Thick crust in next 3500 pizzas = 3500*(391/1075)
Expected number of Thick crust in next 3500 pizzas = 1273
Out of 3500, he may expect 1273 pizzas to be thick crust
Answer:
upper control limit = 13.34
Step-by-step explanation:
The c-chart is used to check the change in the number of recorded calls per day
First find out the center line
c = sum of recorded calls/number of days
c = (3 + 0 + 8 + 9 + 6 + 7 + 4 + 9 + 8)/9
c = 54/9
c = 6
The upper control limit for 3σ is
upper control limit = c + 3√c
upper control limit = 6 + 3√6
upper control limit = 13.34
Therefore, the upper control limit for the 3-sigma c-chart is 13.34.