Answer:
Not sure but for billions of years. I don't think anyone can tell you an exact answer because it wouldn't make sense.
Explanation:
if someone else answers please give me brainliest it would be appreciated! <3
<span>The most important role of this peculiar double helix structure of DNA is to facilitate replication....in preparation of cell division each of the 2 strands acts as a template thus facilitating precise copying of genes....in the Nature(1953), </span>
Answer:
BETTER than it is now for humans. Greenhouse gasses are bad in any amount.
Explanation:
Penicillins disrupts bacterial cell wall synthesis.
<h3>
How does penicillin affect bacterial cell walls?</h3>
- Penicillin kills bacteria by inhibiting the proteins which cross-link peptidoglycans in the cell wall .
- When a bacterium divides in the presence of penicillin, it cannot fill in the “holes” left in its cell wall.
- β-Lactam antibiotics, including penicillins, cephalosporins, monobactams, and carbapenems, are distinguished by a lactam ring in their molecular structure and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls.
- Penicillins work by bursting the cell wall of bacteria. Drugs in the penicillin class work by indirectly bursting bacterial cell walls.
- They do this by acting directly on peptidoglycans, which play an essential structural role in bacterial cells.
To learn more about Penicillin from the given link
brainly.com/question/11849121
#SPJ4
Answer:
photochemical
hydrocarbon
Explanation:
Morning commuter traffic in cities contributes to<u> photochemical</u> smog. In this type of air pollution, a mixing of <u>hydrocarbons</u> from certain plants, nitrogen oxides from cars, and UV radiation from the sun results in a variety of pollutants, such as ground-level ozone, which can cause coughing and breathing problems.
<em>Photochemical smogs are caused by the photochemical reaction of hydrocarbon and nitrogen oxides in the lower atmosphere with sunlight playing a major role. The reaction of the hydrocarbon with the nitrogen oxide in the presence of light leads to the evolution of ozone gas while nitrogen oxide has the capacity to react with the sunlight on its own to produce nitrogen dioxide. This result in the formation of smog</em>