Given :-
- 12 workers can do a piece of work in 20 days .
To Find :-
- How many workers should be added to complete the work in 16 days ?
Solution :-
According to the question ,
→ In 20days 12 workers can do a piece of work.
→ In 1day 12*20 workers can do that work
( Less days , more workers )
→ In 16 days 12*20/16 = 15 workers can do the work.
So 15 -12 = 3 workers should be added to complete the work.
<u>Hence</u><u> the</u><u> required</u><u> answer</u><u> is</u><u> </u><u>3 </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>.</em>
Answer:
152 units²
Step-by-step explanation:
4×8 + 2[(6×8) + (½×6×4)]
= 152
Answer:
b
Step-by-step explanation:
Wiseman’s Durango Guam Cincinnati Franco so
Answer:
Volume of the Tetrahedron T =
Step-by-step explanation:
As given, The tetrahedron T is bounded by the planes x + 2y + z = 2, x = 2y, x = 0, and z = 0
We have,
z = 0 and x + 2y + z = 2
⇒ z = 2 - x - 2y
∴ The limits of z are :
0 ≤ z ≤ 2 - x - 2y
Now, in the xy- plane , the equations becomes
x + 2y = 2 , x = 2y , x = 0 ( As in xy- plane , z = 0)
Firstly , we find the intersection between the lines x = 2y and x + 2y = 2
∴ we get
2y + 2y = 2
⇒4y = 2
⇒y =
= 0.5
⇒x = 2(
) = 1
So, the intersection point is ( 1, 0.5)
As we have x = 0 and x = 1
∴ The limits of x are :
0 ≤ x ≤ 1
Also,
x = 2y
⇒y = 
and x + 2y = 2
⇒2y = 2 - x
⇒y = 1 - 
∴ The limits of y are :
≤ y ≤ 1 - 
So, we get
Volume = 
= ![\int\limits^1_0 {\int\limits^{1-\frac{x}{2}}_{y = \frac{x}{2}}{[z]}\limits^{2-x-2y}_0 {} \, \, dy \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%5Cint%5Climits%5E%7B1-%5Cfrac%7Bx%7D%7B2%7D%7D_%7By%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%7D%7B%5Bz%5D%7D%5Climits%5E%7B2-x-2y%7D_0%20%7B%7D%20%5C%2C%20%20%20%5C%2C%20dy%20%20%5C%2C%20dx)
= 
= ![\int\limits^1_0 {[2y-xy-y^{2} ]}\limits^{1-\frac{x}{2}} _{\frac{x}{2} } {} \, \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%5B2y-xy-y%5E%7B2%7D%20%5D%7D%5Climits%5E%7B1-%5Cfrac%7Bx%7D%7B2%7D%7D%20_%7B%5Cfrac%7Bx%7D%7B2%7D%20%7D%20%7B%7D%20%5C%2C%20%5C%2C%20dx)
= ![\int\limits^1_0 {[2(1-\frac{x}{2} - \frac{x}{2}) -x(1-\frac{x}{2} - \frac{x}{2}) -(1-\frac{x}{2}) ^{2} + (\frac{x}{2} )^{2} ] {} \, \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%5B2%281-%5Cfrac%7Bx%7D%7B2%7D%20-%20%5Cfrac%7Bx%7D%7B2%7D%29%20%20-x%281-%5Cfrac%7Bx%7D%7B2%7D%20-%20%5Cfrac%7Bx%7D%7B2%7D%29%20-%281-%5Cfrac%7Bx%7D%7B2%7D%29%20%5E%7B2%7D%20%20%2B%20%28%5Cfrac%7Bx%7D%7B2%7D%20%29%5E%7B2%7D%20%5D%20%7B%7D%20%5C%2C%20%5C%2C%20dx)
= 
= 
= 1 - 1² +
- 0 + 0 - 0
= 1 - 1 +
= 
So, we get
Volume =