1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
3 years ago
12

The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)

. Sample data showing the math and writing scores for a sample of twelve students who took the SAT follow.
Student Math Writing Student Math Writing
1 540 474 7 480 430
2 432 380 8 499 459
3 528 463 9 610 615
4 574 612 10 572 541
5 448 420 11 390 335
6 502 526 12 593 613

Use α= 0.05 level of significance and test for a difference between the population mean for the math scores and the population mean for the writing scores. Enter negative values as negative numbers. What is the test statistic?
Mathematics
1 answer:
Wittaler [7]3 years ago
8 0

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

You might be interested in
Bryan hiked up to the top of City Creek in 3 hr and then returned down the canyon to the trailhead in another 2 hr. His speed do
kati45 [8]
Still need your answer ?

7 0
3 years ago
The lines given by the equations y = 2x and y= 2x + 1 are
Elan Coil [88]
A. is the answer i’m pretty sure
7 0
3 years ago
Please show work
OlgaM077 [116]

Answer:

3.7hours

Step-by-step explanation:

Step one:

A car travels 360 miles in 8 hours

the speed is calculated as

speed= distance/time

speed= 360/8

speed= 45mph

Step two:

How much time will it take traveling 168 miles?

having found the speed, which is the rate at which the car is tavelling

time= distance/speed

time= 168/45

time= 3.7hours

8 0
3 years ago
Help please?!!!!!!!!
guajiro [1.7K]

Answer:

12x + 3

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property

<u>Algebra I</u>

  • Combining Like Terms

Step-by-step explanation:

<u>Step 1: Define</u>

6 + 4(3x - 2) + 5

<u>Step 2: Simplify</u>

  1. Distribute 4:                              6 + 12x - 8 + 5
  2. Combine like terms (Z):            12x + 3
8 0
3 years ago
Read 2 more answers
Which graph best represents the function f(x) = 3(1.5)x?
jok3333 [9.3K]

Answer:

B). graph of increasing exponential function going through point (0, 3)

Step-by-step explanation:

Given function is f\left(x\right)=3\left(1.5\right)^x

Now we need to find about which of the given choices best describes the given function. Where given choices are:

A). graph of increasing exponential function going through point 0, 2

B). graph of increasing exponential function going through point 0, 3

C). graph of increasing exponential function going through point 0, 1

D). graph of increasing exponential function going through point 0, 4

plug x=0 into given function

f\left(x\right)=3\left(1.5\right)^x

f\left(0\right)=3\left(1.5\right)^0=3(1)=3

Hence graph passes through point (0,3).

growth factor 1.5 is greater than 1 so that means it is increasing function.

Hence correct choice is:

B). graph of increasing exponential function going through point (0, 3)

5 0
3 years ago
Read 2 more answers
Other questions:
  • Multiplying or dividing two related quantities by the same number is called __________
    5·1 answer
  • Can someone please tell me the answer for this
    7·1 answer
  • This is a determined or estimated amount of something
    9·2 answers
  • What errors did Amy make? Select all that apply.
    15·2 answers
  • The amplitude of y = -2 sin 3x is
    10·1 answer
  • PLEASE ANSWER ASAP!!!!!!!!!!​
    12·1 answer
  • Liam has 9/10 gallon of paint for his birdhouses he sells at the fair. It takes 1/20 gallon of paint for each one. How many can
    11·1 answer
  • Can someone help me on this one?
    6·2 answers
  • If Shane’s average number of jumps completed is greater than one-half, then the
    5·1 answer
  • John spent 30 minutes developing an estimate for a job. The job itself took 2 hours, 45 minutes to
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!