1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
3 years ago
12

The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)

. Sample data showing the math and writing scores for a sample of twelve students who took the SAT follow.
Student Math Writing Student Math Writing
1 540 474 7 480 430
2 432 380 8 499 459
3 528 463 9 610 615
4 574 612 10 572 541
5 448 420 11 390 335
6 502 526 12 593 613

Use α= 0.05 level of significance and test for a difference between the population mean for the math scores and the population mean for the writing scores. Enter negative values as negative numbers. What is the test statistic?
Mathematics
1 answer:
Wittaler [7]3 years ago
8 0

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

You might be interested in
THIS IS MY LAST QUESTION B4 I DELETE THIS ACCOUNT (10 PTS + BRAINLIEST)
MatroZZZ [7]
Thank you so much :)
5 0
3 years ago
Read 2 more answers
1. Convert 60° to radians.
hram777 [196]

Answer:

60° = \frac{\pi }{3} radians

Step-by-step explanation:

To convert from degrees to radians

radian measure = degree measure × \frac{\pi }{180}

Thus 60° in radian measure

= 60 × \frac{\pi }{180} ( divide ( cancel) 60 and 180 by 60 )

= \frac{\pi }{3}

5 0
3 years ago
the population in a town is 10,000. The population is growing at a rate of 0.08. what will the population be in 10 years
cestrela7 [59]

Hope this helps have a nice day!!!!

7 0
3 years ago
True or false? Postulates are statements that are accepted without question or justification
ale4655 [162]
<span>True, as a postulate is the assumption of existence.</span>
6 0
3 years ago
Read 2 more answers
The table below shows selected points from a function.
FrozenT [24]

Answer:

<em>True </em>

Step-by-step explanation:

<em>Rate Of Change Of Functions </em>

Given a function y=f(x), the rate of change of f can be computed as the slope of the tangent line in a specific point (by using derivatives), or an approximation by computing the slope of a secant line between two points (a,b) (c,d) that belong to the function. The slope can be calculated with the formula

\displaystyle m=\frac{d-b}{c-a}

If this value is calculated with any pair of points and it always results in the same, then the function is linear. If they are different, the function is non-linear.

Let's take the first two points from the table (1,1)(2,4)

\displaystyle m=\frac{4-1}{2-1}=3

Now, we use the second and the third point (2,4) (3,9)

\displaystyle m=\frac{9-4}{3-2}=5

This difference in values of the slope is enough to state the function is non-linear

Answer: True

6 0
3 years ago
Other questions:
  • Find the value of each variable. Explain reasoning and clearly identify answer. Need help with geometry home work.
    13·1 answer
  • Simplify (3x − 5) − (5x + 1).
    7·2 answers
  • If you are asked to create a box plot about data that has two different sets, do would you make 1 or 2 box plots?
    14·1 answer
  • "find the indicated function values"
    6·1 answer
  • Write the equation of the lines that passes through the points (-3, -2) and (0, -3)
    6·1 answer
  • determine the quadratic function f whose graph is given. the vertex is (2,-7) and the y-intercept is -3
    10·1 answer
  • Find the slope of the line that passes through the points (10,8) and (4,12).
    11·2 answers
  • A five​-digit number starts with a number between 4​-9 in the first​ position, with no restrictions on the remaining 4 digits. a
    15·1 answer
  • PLS Helpppp<br> (4y – 3x – 2) – (7y + 4x +3). <br> you have to simplify, linear equations
    9·1 answer
  • Gary drank
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!