∫(t = 2 to 3) t^3 dt
= (1/4)t^4 {for t = 2 to 3}
= 65/4.
----
∫(t = 2 to 3) t √(t - 2) dt
= ∫(u = 0 to 1) (u + 2) √u du, letting u = t - 2
= ∫(u = 0 to 1) (u^(3/2) + 2u^(1/2)) du
= [(2/5) u^(5/2) + (4/3) u^(3/2)] {for u = 0 to 1}
= 26/15.
----
For the k-entry, use integration by parts with
u = t, dv = sin(πt) dt
du = 1 dt, v = (-1/π) cos(πt).
So, ∫(t = 2 to 3) t sin(πt) dt
= (-1/π) t cos(πt) {for t = 2 to 3} - ∫(t = 2 to 3) (-1/π) cos(πt) dt
= (-1/π) (3 * -1 - 2 * 1) + [(1/π^2) sin(πt) {for t = 2 to 3}]
= 5/π + 0
= 5/π.
Therefore,
∫(t = 2 to 3) <t^3, t√(t - 2), t sin(πt)> dt = <65/4, 26/15, 5/π>.
1. <APC = <DQB [ Given]
2. Arc(AC = BD) [ Equal angles subtend equal arcs]
3. AB//CD [From 2]
Answer:
<h3>There equal (-3)=3</h3>
Step-by-step explanation:
<h3> 3 is the same distance from 0 than -3</h3>
the answer is on the page it is a screenshot explaining how to do it
<span><span>Yes, it meets the requirements. 1/12 simplifies to 0.0833 and 4/50 simplifies to .08. .</span>413398#respond</span>