Answer:
The values of given expressions are:
1. gh = -21
2. g^2 - h = 46
3. g + h^2 = 2
4. g + h = -4
5. h - g = 10
6. g - h = -10
Step-by-step explanation:
Given values of g and h are:
g = -7
h = 3
<u>1. gh</u>
The two numbers are being multiplied
Putting the values

<u>2. g^2-h</u>
Putting the values

<u>3. g+h^2</u>
Putting the values

<u>4. g+h</u>
Putting the values

<u>5. h-g</u>
Putting the values

<u>6. g-h</u>
Putting values

Hence,
The values of given expressions are:
1. gh = -21
2. g^2 - h = 46
3. g + h^2 = 2
4. g + h = -4
5. h - g = 10
6. g - h = -10
Given:
Point F,G,H are midpoints of the sides of the triangle CDE.

To find:
The perimeter of the triangle CDE.
Solution:
According to the triangle mid-segment theorem, the length of the mid-segment of a triangle is always half of the base of the triangle.
FG is mid-segment and DE is base. So, by using triangle mid-segment theorem, we get




GH is mid-segment and CE is base. So, by using triangle mid-segment theorem, we get




Now, the perimeter of the triangle CDE is:



Therefore, the perimeter of the triangle CDE is 56 units.
Hope this helps you with your questions.
14/4 is a fraction greater than 1.