1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
3 years ago
15

What is 6,051 x 10^5 written in standard form?

Mathematics
1 answer:
Setler79 [48]3 years ago
6 0

Answer:

605100

Step-by-step explanation:

6.051*10^5=605100

You might be interested in
I need help with multistep equations<br>​
Over [174]

Answer:

1 2/3 = m

Step-by-step explanation:

2/3 = m+3/5 -8/5

Combine terms

2/3 = m-5/5

2/3 = m -1

Add 1 to each side

2/3 +1 = m-1+1

2/3 +3/3 = m

5/3 = m

1 2/3 = m

4 0
3 years ago
Read 2 more answers
Find the mass and center of mass of the lamina that occupies the region D and has the given density function rho. D is the trian
Alla [95]

Answer: mass (m) = 4 kg

              center of mass coordinate: (15.75,4.5)

Step-by-step explanation: As a surface, a lamina has 2 dimensions (x,y) and a density function.

The region D is shown in the attachment.

From the image of the triangle, lamina is limited at x-axis: 0≤x≤2

At y-axis, it is limited by the lines formed between (0,0) and (2,1) and (2,1) and (0.3):

<u>Points (0,0) and (2,1):</u>

y = \frac{1-0}{2-0}(x-0)

y = \frac{x}{2}

<u>Points (2,1) and (0,3):</u>

y = \frac{3-1}{0-2}(x-0) + 3

y = -x + 3

Now, find total mass, which is given by the formula:

m = \int\limits^a_b {\int\limits^a_b {\rho(x,y)} \, dA }

Calculating for the limits above:

m = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2(x+y)} \, dy \, dx  }

where a = -x+3

m = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {(xy+\frac{y^{2}}{2} )} \, dx  }

m = 2.\int\limits^2_0 {(-x^{2}-\frac{x^{2}}{2}+3x )} \, dx  }

m = 2.\int\limits^2_0 {(\frac{-3x^{2}}{2}+3x)} \, dx  }

m = 2.(\frac{-3.2^{2}}{2}+3.2-0)

m = 2(-4+6)

m = 4

<u>Mass of the lamina that occupies region D is 4.</u>

<u />

Center of mass is the point of gravity of an object if it is in an uniform gravitational field. For the lamina, or any other 2 dimensional object, center of mass is calculated by:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{y} = \int\limits^a_b {\int\limits^a_b {x.\rho(x,y)} \, dA }

M_{x} and M_{y} are moments of the lamina about x-axis and y-axis, respectively.

Calculating moments:

For moment about x-axis:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{x} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2.y.(x+y)} \, dy\, dx }

M_{x} = 2\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {y.x+y^{2}} \, dy\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{y^{2}x}{2}+\frac{y^{3}}{3})}\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{x(-x+3)^{2}}{2}+\frac{(-x+3)^{3}}{3} -\frac{x^{3}}{8}-\frac{x^{3}}{24}  )}\, dx }

M_{x} = 2.(\frac{-9.x^{2}}{4}+9x)

M_{x} = 2.(\frac{-9.2^{2}}{4}+9.2)

M_{x} = 18

Now to find the x-coordinate:

x = \frac{M_{y}}{m}

x = \frac{63}{4}

x = 15.75

For moment about the y-axis:

M_{y} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2x.(x+y))} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {x^{2}+yx} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {y.x^{2}+x.{\frac{y^{2}}{2} } } \,dx }

M_{y} = 2.\int\limits^2_0 {x^{2}.(-x+3)+\frac{x.(-x+3)^{2}}{2} - {\frac{x^{3}}{2}-\frac{x^{3}}{8}  } } \,dx }

M_{y} = 2.\int\limits^2_0 {\frac{-9x^3}{8}+\frac{9x}{2}   } \,dx }

M_{y} = 2.({\frac{-9x^4}{32}+9x^{2})

M_{y} = 2.({\frac{-9.2^4}{32}+9.2^{2}-0)

M{y} = 63

To find y-coordinate:

y = \frac{M_{x}}{m}

y = \frac{18}{4}

y = 4.5

<u>Center mass coordinates for the lamina are (15.75,4.5)</u>

3 0
3 years ago
Find the perimeter of a rectangle with a width of (x - 3) and a length of 4x ​
Firdavs [7]

Step-by-step explanation:

        4x

   __________

   |                     |

x-3|                    |     x-3

   |                     |

   |__________

           4x

Add all sides together to get perimeter

2(4x)+2(x-3)=10x-6

7 0
3 years ago
Which expression is equivalent to?...
stiks02 [169]

Answer:

B x^9 ∛ y

Step-by-step explanation:

(x^27 y) ^ (1/3)

x^27^(1/3) y^(1/3)

We can distribute the exponent a^b ^c = a^(b*c)

x^(27*1/3) y^(1/3)

x^9 y^(1/3)

3 0
3 years ago
• Which expression is equivalent to 2(8n)
Elenna [48]

Answer:

ok

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • 3x + 2y = 10 2x + 3y = 15/2
    5·1 answer
  • 10 points and giving out brainiest!! Please help, this is pretty easy, I forgot how to do it though
    7·2 answers
  • Find the rectangular coordinates of the point (-3,1/2pi)
    5·1 answer
  • I NEED HELP ASAP PLEASE THANK YOU
    11·1 answer
  • Write 820.341 in scientific notation​
    13·1 answer
  • Is my answer correct or no
    5·1 answer
  • A notebook costs $4.50 plus sales tax . After sales tax , the notebook is $4.86. What is the sales tax rate?
    10·2 answers
  • Error Analysis! Answer both parts of the question.
    12·1 answer
  • The total simple interest on $1600 invested for five years is $224. What is the percentage rate per annum?
    14·2 answers
  • Divide the rational expressions and express in simplest form. When typing your answer for the numerator and denominator be sure
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!