Answer:
Switch x and y, and solve for y

Step-by-step explanation:
Given

Required
Complete the steps to determine the inverse function
Solving (a): Complete the blanks
Switch x and y, and solve for y
Solving (b): Determine the inverse function
![f(x) = \sqrt[3]{8x} + 4](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5D%7B8x%7D%20%2B%204)
Replace f(x) with y
![y = \sqrt[3]{8x} + 4](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B8x%7D%20%2B%204)
Switch x and y
![x = \sqrt[3]{8y} + 4](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B8y%7D%20%2B%204)
<u>Now, we solve for y</u>
Subtract 4 from both sides
![x -4= \sqrt[3]{8y} + 4-4](https://tex.z-dn.net/?f=x%20-4%3D%20%5Csqrt%5B3%5D%7B8y%7D%20%2B%204-4)
![x -4= \sqrt[3]{8y}](https://tex.z-dn.net/?f=x%20-4%3D%20%5Csqrt%5B3%5D%7B8y%7D)
Take cube roots of both sides

Divide both sides by 8

So, we have:

Hence, the inverse function is:

Answer:
The volume is 1436.8
.
Step-by-step explanation:
-To find the volume of a sphere, you need the formula:

-Use the radius for the formula:

-Then, you solve:

×
× 
× 

-Round the answer to the nearest tenth:

So, therefore the volume is 1436.8
.
Answer:
Trrvdddctcfc hfrvhjk
Step-by-step explanation:
Answer:
10x²+11-2x
Step-by-step explanation:
I hope you mean 7x²+8+5, not 7x²+8x+5.
We need to combine like terms. Anything with squared should be added together, et cetera.
(7x²+8+5)+(3x²-2x-2)
You can take out the parenthesis, because they don't matter in addition.
7x²+8+5+3x²-2x-2
Add the terms, step by step. Each bold pair needs to be added together.
7x²+8+5+3x²-2x-2
10x²+8+5-2x-2
10x²+11-2x
Now there's no more we can add together.
Answer:
B. -55
Step-by-step explanation:
La resta entre ambas funciones consiste en la sustracción de términos semejantes como demostraremos a continuación:
1)
Dado
2)
Dado
3)
Definición de resta de funciones.
4)

5)
Propiedad distributiva/
6)
Propiedad conmutativa
7)
Sustracción de términos semejantes/Resultados.
A continuación, evaluamos la función resultante en
:


Por ende, la respuesta correcta es B.