Answer:
Switch x and y, and solve for y

Step-by-step explanation:
Given

Required
Complete the steps to determine the inverse function
Solving (a): Complete the blanks
Switch x and y, and solve for y
Solving (b): Determine the inverse function
![f(x) = \sqrt[3]{8x} + 4](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5D%7B8x%7D%20%2B%204)
Replace f(x) with y
![y = \sqrt[3]{8x} + 4](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B8x%7D%20%2B%204)
Switch x and y
![x = \sqrt[3]{8y} + 4](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B8y%7D%20%2B%204)
<u>Now, we solve for y</u>
Subtract 4 from both sides
![x -4= \sqrt[3]{8y} + 4-4](https://tex.z-dn.net/?f=x%20-4%3D%20%5Csqrt%5B3%5D%7B8y%7D%20%2B%204-4)
![x -4= \sqrt[3]{8y}](https://tex.z-dn.net/?f=x%20-4%3D%20%5Csqrt%5B3%5D%7B8y%7D)
Take cube roots of both sides

Divide both sides by 8

So, we have:

Hence, the inverse function is:
