X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>
Since the height is different on both ends, we can assume that the wall is a trapezoid. Knowing that, we can replace the measures we know in the formula and our onky variable is the length of the wall - we only need to isolate it.
A= ((b+B)h)/2
26.4=((2+2.4)h)/2
52.8=4.4h
h=12
26. 2x^2 +4x -10 = 0 (-4 + - (root(4^2 - 4*2*-10)))/2*2 =
(-4 + - (root(96)))/4
(-4 + (root(96)))/4 ≈ 1.45
(-4 - (root(96)))/4 ≈ -3.45
27. f(x) = 0 when any of the components that multiply together equal 0 for this function therefore x -2 = 0 x +3 = 0 x -5 = 0 so f(x) = 0 when x = 2, -3 or 5
28. It looks like it shows you how to do it
Step-by-step explanation:
450cm of water is needed for it to be
Chris is going 10 mph. After 9 hours, Chris has gone 90 miles. Elena is going 14 mph. After 9 hours, she has gone 126 miles. 126 miles is 36 miles more then 90 miles.