XWhich statement is true for the circumcenter of a right triangle?Which statement is true for the circumcenter of a right triangle?
Answer:

Step-by-step explanation:
![(-\frac{4}{3}\pi r^3 x)+(4\pi r^2y)\\\\=[4\pi r^2\times (-\frac{1}{3}rx)]+[4\pi r^2y]\\\\4\pi r^2\ is\ common\ in\ both\ expression\\\\ =4\pi r^2(-\frac{1}{3}rx+y)\\\\(-\frac{4}{3}\pi r^3 x)+(4\pi r^2y)=4\pi r^2(-\frac{1}{3}rx+y)](https://tex.z-dn.net/?f=%28-%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%20x%29%2B%284%5Cpi%20r%5E2y%29%5C%5C%5C%5C%3D%5B4%5Cpi%20r%5E2%5Ctimes%20%28-%5Cfrac%7B1%7D%7B3%7Drx%29%5D%2B%5B4%5Cpi%20r%5E2y%5D%5C%5C%5C%5C4%5Cpi%20r%5E2%5C%20is%5C%20common%5C%20in%5C%20both%5C%20expression%5C%5C%5C%5C%20%3D4%5Cpi%20r%5E2%28-%5Cfrac%7B1%7D%7B3%7Drx%2By%29%5C%5C%5C%5C%28-%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%20x%29%2B%284%5Cpi%20r%5E2y%29%3D4%5Cpi%20r%5E2%28-%5Cfrac%7B1%7D%7B3%7Drx%2By%29)
--------------------------------------
Find Slope :
--------------------------------------

--------------------------------------
Find y-intercept
--------------------------------------
At (0, 4), y-intercept = 4
--------------------------------------
Equation :
--------------------------------------
