Answer:
B
Explanation:
Directional selection tends to evolve towards one specific trait. In this example, white rabbits no longer have a competitive advantage because of disappearing snow. This means they are more easily spotted by predators, resulting in reduced fitness and less chance they will live to reproductive age and pass their recessive white alleles on.
Natural selection will favor the gray colour allele, increasing the frequency oft this previously rare allele.
Answer:
Why is it important to learn about stem cells and stem cell research?
Researchers hope stem cell studies can help to: Increase understanding of how diseases occur. By watching stem cells mature into cells in bones, heart muscle, nerves, and other organs and tissue, researchers may better understand how diseases and conditions develop.
How does stem cell research affect society?
Research with embryonic stem cells may lead to new, more effective treatments for serious human ailments and alleviate the suffering of thousands of people. Diseases such as juvenile diabetes, Parkinson's disease, heart failure and spinal cord injuries are examples.
Answer:
Each mutant would be mated to wild type and to every other mutant to create diploid strains. The diploids would be assayed for growth at permissive and restrictive temperature. Diploids formed by mating a mutant to a wild type that can grow at restrictive temperatures identify the mutation as recessive. Only recessive mutations can be studied using complementation analysis. Diploids formed by mating two recessive mutants identify mutations in the same gene if the diploid cannot grow at restrictive temperature (non-complementation), and they identify mutations in different genes if the diploids can grow at restrictive temperature (complementation).
Explanation:
Recessive mutations are those whose phenotypic effects are only visible in homo-zygous individuals. Moreover, a complementation test is a genetic technique used to determine if two different mutations associated with a phenotype colocalize in the same <em>locus</em> (i.e., they are alleles of the same gene) or affect two different <em>loci</em>. In diploid (2n) organisms, this test is performed by crossing two homo-zygous recessive mutants and then observing whether offspring have the wild-type phenotype. When two different recessive mutations localize in different <em>loci</em>, they can be considered as 'complementary' since the heterozygote condition may rescue the function lost in homo-zygous recessive mutants. In consequence, when two recessive mutations are combined in the same genetic background (i.e., in the same individual) and they produce the same phenotype, it is possible to determine that both mutations are alleles of the same gene/<em>locus</em>.
Answer:
A) Glucose and Oxygen
Explanation:
Photosynthesis takes in water and carbon dioxide and converts it to glucose and oxygen.