Answer:
Y hzuzjz is a complete* of the following elements has the largest atomic size in the world is the difference between
The smallest prime number of p for which p^3 + 4p^2 + 4p has exactly 30 positive divisors is 43.
<h3>What is the smallest prime number of p for which p must have exactly 30 positive divisors?</h3>
The smallest number of p in the polynomial equation p^3 + 4p^2 + 4p for which p must have exactly 30 divisors can be determined by factoring the polynomial expression, then equating it to the value of 30.
i.e.
By factorization, we have:
Now, to get exactly 30 divisor.
- (p+2)² requires to give us 15 factors.
Therefore, we can have an equation p + 2 = p₁ × p₂²
where:
- p₁ and p₂ relate to different values of odd prime numbers.
So, for the least values of p + 2, Let us assume that:
p + 2 = 5 × 3²
p + 2 = 5 × 9
p + 2 = 45
p = 45 - 2
p = 43
Therefore, we can conclude that the smallest prime number p such that
p^3 + 4p^2 + 4p has exactly 30 positive divisors is 43.
Learn more about prime numbers here:
brainly.com/question/145452
#SPJ1
Answer:
C) ⅙
Step-by-step explanation:
Starting with A:
April, August
2/12
1/6
Answer:
15
Step-by-step explanation:
The hypotenuse of a triangle is a² + b² = c².
12² + 9² = c²
144 + 81 = 225
√225 = 15
ΔABC is a 45 - 45 - 90 triangle. The pattern of its sides is as follows:
Each leg = 1 unit (and both legs are that way, since the triangle is isosceles - so two sides are the same)
Hypotenuse = √2 units.
So if we know either leg, we multiply by √2 to get the hypotenuse. In reverse, we divide by √2 if we know the hypotenuse to get the measurement of a leg.
Our problem tells us that the hypotenuse AC is 10 units. We divide 10 by √2 to get the measurement of leg AB. Since it's a 45 -45 - 90 triangle, AB = BC.

to rationalize the radical

Thus, each leg is 5\sqrt{2} [/tex].