Answer:
i can try just put the questions up
Step-by-step explanation:
The answer is 6x+7x there is no answer without the value of c
Answer: See Below
<u>Step-by-step explanation:</u>
NOTE: You need the Unit Circle to answer these (attached)
5) cos (t) = 1
Where on the Unit Circle does cos = 1?
Answer: at 0π (0°) and all rotations of 2π (360°)
In radians: t = 0π + 2πn
In degrees: t = 0° + 360n
******************************************************************************

Where on the Unit Circle does
<em>Hint: sin is only positive in Quadrants I and II</em>


In degrees: t = 30° + 360n and 150° + 360n
******************************************************************************

Where on the Unit Circle does 
<em>Hint: sin and cos are only opposite signs in Quadrants II and IV</em>


In degrees: t = 120° + 360n and 300° + 360n
Answer:7134.4
Step-by-step explanation: 36.4*14 is 509.6 and times 14 again is 7134.4
Hello,
The formula for finding the area of a circular region is:

then:

With the two radius it is formed an isosceles triangle, so, we must obtain its area, but first we obtain the height and the base.

Now we can find its area:
![A_{2}=2* \frac{b*h}{2} \\ \\ A_{2}= [r*sen(40)][r*cos(40)]\\ \\A_{2}= r^{2}*sen(40)*cos(40)](https://tex.z-dn.net/?f=A_%7B2%7D%3D2%2A%20%5Cfrac%7Bb%2Ah%7D%7B2%7D%20%20%5C%5C%20%20%5C%5C%20A_%7B2%7D%3D%20%5Br%2Asen%2840%29%5D%5Br%2Acos%2840%29%5D%5C%5C%20%20%5C%5CA_%7B2%7D%3D%20r%5E%7B2%7D%2Asen%2840%29%2Acos%2840%29)
The subtraction of the two areas is 100cm^2, then:
Answer: r= 1.59cm