Answer:
Step-by-step explanation:
Answer:
x<6/5, x>14/5
Step-by-step explanation:
Steps
$5\left|x-2\right|+4>8$
$\mathrm{Subtract\:}4\mathrm{\:from\:both\:sides}$
$5\left|x-2\right|+4-4>8-4$
$\mathrm{Simplify}$
$5\left|x-2\right|>4$
$\mathrm{Divide\:both\:sides\:by\:}5$
$\frac{5\left|x-2\right|}{5}>\frac{4}{5}$
$\mathrm{Simplify}$
$\left|x-2\right|>\frac{4}{5}$
$\mathrm{Apply\:absolute\:rule}:\quad\mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad\mathrm{or}\quad\:u\:>\:a$
$x-2<-\frac{4}{5}\quad\mathrm{or}\quad\:x-2>\frac{4}{5}$
Show Steps
$x-2<-\frac{4}{5}\quad:\quad x<\frac{6}{5}$
Show Steps
$x-2>\frac{4}{5}\quad:\quad x>\frac{14}{5}$
$\mathrm{Combine\:the\:intervals}$
$x<\frac{6}{5}\quad\mathrm{or}\quad\:x>\frac{14}{5}$
Answer:
z²^30
Step-by-step explanation:
This is it enjoy.
Answer:
n < - 3 or n > - 2
Step-by-step explanation:
Inequalities of the type | x | > a , have solutions of the form
x < - a or x > a
Then
2n + 5 < - 1 or 2n + 5 > 1
Solve both inequalities
2n + 5 < - 1 ( subtract 5 from both sides )
2n < - 6 ( divide both sides by 2 )
n < - 3
OR
2n + 5 > 1 ( subtract 5 from both sides )
2n > - 4 ( divide both sides by 2 )
n > - 2
Solution is n < - 3 or n > - 2
Answer:vssbiubpu buivbub [u bu[b [uib
Step-by-step explanation:
scewsucpsivgeduaigxuygu1yuwgyugvuygquyy3gvdv