1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
choli [55]
3 years ago
15

9-2(7-8) Help please

Mathematics
2 answers:
Aleks04 [339]3 years ago
8 0
11 i used a calculator
yuradex [85]3 years ago
6 0
9 - 2(7 - 8)
9 - 2(-1)
9 - (-2)
11
You might be interested in
Show with work please.
kolbaska11 [484]

Answer:

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

Step-by-step explanation:

The identity you will use is:

$\csc \left(x\right)=\frac{1}{\sin \left(x\right)}$

So,

$\csc \left(\theta-\frac{\pi }{2}\right)$

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{\sin \left(-\frac{\pi }{2}+\theta\right)}$

Now, using the difference of sin

Note: state that \text{sin}(\alpha\pm \beta)=\text{sin}(\alpha) \text{cos}(\beta) \pm \text{cos}(\alpha) \text{sin}(\beta)

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)}$

Solving the difference of sin:

$-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)$

-\cos \left(\theta\right) \cdot 1+0\cdot \sin \left(\theta\right)

-\text{cos} \left(\theta\right)

Then,

$\csc \left(\theta-\frac{\pi }{2}\right)=-\frac{1}{\cos \left(\theta\right)}$

Once

\text{sec}(-\theta)=\text{sec}(\theta)

And, \text{sec}(\theta)=-0.73

$-\frac{1}{\cos \left(\theta\right)}=-\text{sec}(\theta)$

$-\frac{1}{\cos \left(\theta\right)}=-(-0.73)$

$-\frac{1}{\cos \left(\theta\right)}=0.73$

Therefore,

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

3 0
3 years ago
If you get this right I will mark you as a brainliest
lara [203]
Is it D. 58? or B.91?
4 0
3 years ago
Pls help what is this as a simplified fraction (thank u Jesus loves u)
Arte-miy333 [17]

Answer:

7.9 or 79/10

Step-by-step explanation:

-12.166 / -1.54

12.166 / 1.54

7.9

4 0
2 years ago
Read 2 more answers
Use the Distributive Property to rewrite the expression. 9(y + 4)
Ulleksa [173]

Answer:

Answer would be 9y+36

Step-by-step explanation:

Because if you distribute the 9 inside the parenthesis, you'd get

9*y=9y and 9*4=36

so 9y+36

Hope my answer was helpful to you!

7 0
3 years ago
A<br> 9x - 40<br> B<br> 3x + 20<br> x = [?]
Mrrafil [7]

Answer:

x = 10

Step-by-step explanation:

9x - 40 = 3x + 20

<u>9</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>x</u> - 40 = <u>3x - 3x</u> + 20

6x - 40 = 20

6x <u>-</u><u> </u><u>40</u><u> </u><u>+</u><u> </u><u>40</u> = <u>20</u><u> </u><u>+</u><u> </u><u>40</u>

6x = 60

<u>6x</u><u> </u><u>/</u><u> </u><u>6</u> = <u>60</u><u> </u><u>/</u><u> </u><u>6</u>

x = 10

Now plug the x value in the equation to make the statement true that A is parallel to B.

9x - 40

<u>9</u><u>(</u><u>10</u><u>)</u> - 40

<u>90</u><u> </u><u>-</u><u> </u><u>40</u>

50

3x + 20

<u>3</u><u>(</u><u>10</u><u>)</u> + 20

<u>30</u><u> </u><u>+</u><u> </u><u>20</u>

50

Therefore, x = 10 making the statement true that A is parallel to B. Hope this helps and stay safe, happy, and healthy, thank you :) !!

7 0
3 years ago
Read 2 more answers
Other questions:
  • Find the missing value. sin x = .65
    11·1 answer
  • The Alan Company bought 80 tickets for a jazz company. After giving away 20 tickets to customers, the company sold the rest to t
    5·1 answer
  • Order theses numbers least to greastest 3.18 3.1 3.108 2.1952
    14·1 answer
  • 1.
    14·1 answer
  • pls help!!! this is due in 5 minutes. (pls don’t provide a link, i’ll give brainiest if u don’t just pls help me!!!)
    6·2 answers
  • Evaluate 3x + 1/3 if x =1/4? simplify if possible​
    13·2 answers
  • Can someone help with this
    7·1 answer
  • 30 fortyths into a decimal​
    5·1 answer
  • Solve pls brainliest
    6·2 answers
  • Use the box plots comparing the number of boy dogs and number of girl dogs attending doggy daycare each day for a month to answe
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!