Check the picture below, so let's check the equations below hmmm
![\boxed{A}\\\\ y=\cfrac{16-3x}{4}\implies y=\cfrac{-3x+16}{4}\implies y = \cfrac{-3x}{4}+\cfrac{16}{4}\implies y=-\cfrac{3}{4}x\stackrel{\stackrel{b}{\downarrow }}{+4}~\hfill \bigotimes \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cboxed%7BA%7D%5C%5C%5C%5C%20y%3D%5Ccfrac%7B16-3x%7D%7B4%7D%5Cimplies%20y%3D%5Ccfrac%7B-3x%2B16%7D%7B4%7D%5Cimplies%20y%20%3D%20%5Ccfrac%7B-3x%7D%7B4%7D%2B%5Ccfrac%7B16%7D%7B4%7D%5Cimplies%20y%3D-%5Ccfrac%7B3%7D%7B4%7Dx%5Cstackrel%7B%5Cstackrel%7Bb%7D%7B%5Cdownarrow%20%7D%7D%7B%2B4%7D~%5Chfill%20%5Cbigotimes%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

9514 1404 393
Answer:
∠N = 10°
Step-by-step explanation:
Assuming the marked point on segment LN is supposed to be the center of the circle, arc NML is 180°, so arc ML is 180° -160° = 20°.
Arc ML is intercepted by inscribed angle LNM, so the measure of that angle is half the arc measure:
∠N = (1/2)(20°) = 10°
Answer:
5(b+2)
Step-by-step explanation:
:D