1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
3 years ago
13

A model rocket is fired vertically upward from rest. Its acceleration for the first three seconds is a(t)=60t, at which time the

fuel is exhausted and it becomes a freely "falling" body. Fourteen seconds later, the rocket's parachute opens, and the (downward) velocity slows linearly to -18ft/sec in 5 seconds. The rocket then "floats" to the ground at that rate. (a) Determine the position function 's' and the velocity function v (for all times 't'). Sketch the graphs of 's' and 'v'. (b) At what time does the rocket reach its maximum height, and what is that height? (c) At what time does the rocket land? Please use antiderivatives to solve the problem.

Mathematics
1 answer:
const2013 [10]3 years ago
7 0

Answer:

See steps below

Step-by-step explanation:

We have

a(t) = 60t for 0 ≤ t ≤ 3.

V(t) is the anti-derivative of a(t), so

\large v(t)=\frac{60t^2}{2}+C=30t^2+C

where C is a constant.

But v(0) = 0 (the rocket is launched from rest), so C = 0 and

\large v(t)=30t^2\;(0\leq t

S(t) is the anti-derivative of v(t), so

\large s(t)=\frac{30t^3}{3}+C=10t^3+C\;(0\leq t\leq 3)

where C is a constant.

But s(0) = 0 (the rocket is on the land), so C = 0 and

\large s(t)=10t^3\;(0\leq t\leq 3)

After 3 seconds the fuel is exhausted and it becomes a freely "falling" body for 14 seconds until the parachute opens.

Hence from t=3 until t=17 the acceleration is the gravity. So

\large a(t)=-32.174\;ft/sec^2

the anti-derivative v(t) is now

v(t) = -32.174t + C

where C is a constant.

But v(3) = 270 ft/sec, in consequence:  

270 = -32.174(3) +C and C = 366.522 and

v(t) = -32.174t + 366.522 ( 3 ≤ t ≤ 17)

The anti-derivative of v(t) is now

\large s(t)=-32.174\frac{t^2}{2}+366.522t+C=-16.087t^2+366.522t+C

But

\large  s(3)=10(3)^3=270

Hence

\large 270=-16.087(3)^2+366.522*3+C\Rightarrow C=-684.783

and

\large s(t)=-16.087t^2+366.522*t-684.783 for  3≤ t ≤ 17

At second 17 the parachute opens and the rocket gets the acceleration of  

\large a(t)=-\frac{18}{5}=-3.6\;ft/sec^2

until it lands.

In this case the anti-derivative is

v(t) = -3.6t + C for t  ≥  17

But  

v(17) = -32.174*17 + 366.522 = -180.436

so -3.6(17)+C = -180.436

hence C = -119.236  and

v(t) = -3.6t -119.236 (t  ≥  17 until landing)

for this v(t) the anti-derivative is

\large s(t)=-3.6\frac{t^2}{2}-119.236t+C=-1.8t^2-119.236t+C

since  

\large s(17) = -16.087(17)^2+366.522*17-684.783=896.948

then

\large 896.948=-1.8(17)^2-119.236*17+C\Rightarrow C=3444.16

 

and

\large s(t)=-1.8t^2-119.236t+3444.16\;(t\geq 17)

until landing.

When the rocket lands, s(t) becomes zero. It happens at the positive value of t such that

\large -1.8t^2-119.236t+3444.16=0

solving the quadratic equation we get t = 21.7463 seconds.  

So

\large s(t)=-1.8t^2-119.236t+3444.16 for 17 ≤ t ≤ 21.7463

Summarizing

\large v(t)=\begin{cases}30t^2 & 0\leq t \leq 3\\-32.174t + 366.522 & 3\leq t \leq 17\\-3.6t -119.236&17\leq t \leq 21.7463 \end{cases}

and

\large s(t)=\begin{cases}10t^3 & 0\leq t \leq 3\\-16.087t^2+366.522*t-684.783 & 3\leq t \leq 17\\-1.8t^2-119.236t+3444.16&17\leq t \leq 21.7463\end{cases}

<h3>The graphs of v(t) and s(t) are sketched in the pictures attached </h3><h3>(see pictures) </h3>

(b) At what time does the rocket reach its maximum height, and what is that height?

The rocket reaches its maximum height when v(t) = 0.

That happens at an instant t between 3 and 14. That is to say, at the instant t such that

v(t) = -32.174t + 366.522 =0

and t = 366.522/32.174 = 11.39187 seconds

The maximum height would be then s(11.39187)

\large s(11.39187)=-16.087(11.39187)^2+366.522*11.39187-684.783=1402.902\;ft

(c) At what time does the rocket land?

When the rocket lands s(t) becomes zero. It happens at the positive value of t such that

\large -1.8t^2-119.236t+3444.16=0

solving the quadratic equation we get t = 21.7463 seconds.

You might be interested in
in the northen hemisphere the ratio of tye area of the water is 2:3 work out the percentage of tge area of the northen hemispher
labwork [276]

Answer:

40%

Step-by-step explanation:

l2:w3 means that the fraction of land is 2/5.

time 2/5 by 20, you get 40/100

convert 40/100 into percentage is 40%

5 0
2 years ago
jeremy drew a polygon with four right angles and four sides with the same length.what kind of polygon did jeremy draw?
FromTheMoon [43]
A square has 4 right angels and 4 sides with equal angels ;)
8 0
3 years ago
2.5 x 10 to the third power times what number is equal to 5 x 10 to the sixth power?
Taya2010 [7]

Answer:

2 is the number because half of 5 is 2.5

4 0
3 years ago
Write an inequality for the graph
d1i1m1o1n [39]

the inequality for the graph is x<3

8 0
3 years ago
Como resuelvo ese problema ?
prisoha [69]
160. 
Brainiest please

5 0
3 years ago
Other questions:
  • Can someone help me find the area..?
    7·2 answers
  • 100 Points!!pease help
    14·2 answers
  • A standard fluorescent tube has a life length that is normally distributed with a mean of 7000 hours and a standard deviation of
    9·1 answer
  • A store mixes Kentucky bluegrass worth $12 per pound and chewings fescue worth $15 per pound. The mixture is to sell for $13 per
    5·1 answer
  • A circular garden has a circumference of
    6·1 answer
  • the Georgia aquarium in Atlanta is about 2.63*10^3 inches long, 1.26*10^2 inches wide, and 3*10^1 inches deep at it's largest po
    9·1 answer
  • True or False. The circumference of a circle is proportional to its diameter. Explain your answer.
    7·1 answer
  • Simplify: -2 (8 - 6s + 11t - 3u)
    5·2 answers
  • You decide you need a new computer. The cost of the computer is $840. However, the store also offers a rent to own option with w
    10·1 answer
  • How many 3 letter "words" can be formed from the standard 26 letter alphabet, if the first letter must be a vowel (A, E, I, O, o
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!