The required equation of the line passing the coordinates will be y = 3/4x - 1/4
<h3 /><h3>Equation of a line</h3>
The standard equation of a line is expressed as y= mx + b
where
m is the slope
b is the y-intercept
Given the coordinate points on a line (3, 2) and (-1, -1)
Slope = -1-2/-1-3
Slope = 3/4
Determine the y-intercept
2 = 3/4(3) + b
2 = 9/4 + b
b = 2 - 9/4
b = -1/4
The required equation of the line passing the coordinates will be y = 3/4x - 1/4
Learn more on equation of a line here: brainly.com/question/18831322
#SPJ1
Answer:
We know that:
For every two flowers that Kayra sells, Mycho sells 5.
Now, in the question we have:
"If Kayra sold 6 newspapers, how many did Mycho sell?"
There is no information about newspapers, so we can't answer anything.
If we had something like:
"If Kayra sold 6 flowers, how many did Mycho sell?"
Well, in this case, we remember that for every 2 flowers that Kayra sells, Mycho sells 5, then the first thing we need to do is count how many groups of 2 flowers we have in 6 flowers, this is:
6/2 = 3 groups.
And for each one of these, Mycho will sell 5 flowers, then the total number of flowers that Mycho sold is:
3*5 = 15 flowers.
Answer: b) rolled three times, number of 2s rolled
d) rolled twice, number of odds rolled
<u>Step-by-step explanation:</u>
A binomial experiment must meet the following criteria:
- There must be a fixed number of trials (rolls)
- Each trial (roll) is independent of the others
- There are only two outcomes (success or fail)
- The probability of each outcome remains constant from trial to trial
a) rolled twice --> satisfies #1 & #2 (n = 2)
X is the sum --> fails #3 (more than two outcomes)
b) rolled three times --> satisfies #1 & #2 (n = 3)
X is the number of 2s rolled --> satisfies #3 & #4 (P success = 1/6)
c) rolled an unknown number of times - fails #1
d) rolled twice --> satisfies #1 & #2 (n = 2)
X is the number of odds rolled --> satisfies #3 & #4 (P success = 1/2)
Answer:
2q+6
Step-by-step explanation:
So basically, you would do this.
-2q-6+6q+12-2q
Next
-4q+6q = 2q
12-6=6
2q+6
D (x, y) ---> (x, -y)
We can look at Point X and Point X'.
Point X is at (2, -2), and Point X' is at (2, 2).
The y-value has been multiplied by -1, or turned positive, so the answer would be D.