Answer:
$180000
Step-by-step explanation:
Let's c be the number of chair and d be the number of desks.
The constraint functions:
- Unit of wood available 4d + 3c <= 2000 or d <= 500 - 0.75c
- Number of chairs being at least twice of desks c >= 2d or d <= 0.5c
c >= 0
d >= 0
The objective function is to maximize the profit function
P (c,d) = 400d + 250c
We draw the 2 constraint functions (500 - 0.75c and 0.5c) on a c-d coordinates (witch c being the horizontal axis and d being the vertical axis) and find the intersection point 0.5c = 500 - 0.75c
1.25c = 500
c = 400 and d = 0.5c = 200 so P(400, 200) = $250*400 + $400*200 = $180,000
The 500 - 0.75c intersect with c-axis at d = 0 and c = 500 / 0.75 = 666 and P(666,0) = 666*250 = $166,500
So based on the available zones in the chart we can conclude that the maximum profit we can get is $180000
Answer:
Step-by-step explanation:
Knowing only side-side-angle (SSA) does not work because the unknown side could be located in two different places. Knowing only angle-angle-angle (AAA) does not work because it can produce similar but not congruent triangles. ... The same is true for side angle side, angle side angle and angle angle side.
<span>The true statement is that the data value 2.5 will lie below the second quartile.</span>
Answer:
∠Z ≈ 12°
Step-by-step explanation:
Using the Sine Rule in ΔXYZ
=
, that is
=
( cross- multiply )
48 × sinZ = 10 × sin96° ( divide both sides by 48 )
sinZ = 
Z =
(
) ≈ 12°