Answer:
![a\cdot b=-2000\sqrt{2}](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D-2000%5Csqrt%7B2%7D)
Step-by-step explanation:
Given information: |a| = 80, |b| = 50, the angle between a and b is 3π/4.
We need to find the dot product a · b.
The formula of dot product is
![a\cdot b=|a||b|\cos \theta](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D%7Ca%7C%7Cb%7C%5Ccos%20%5Ctheta)
where, θ is the angle between a and b.
Substitute the given values in the above formula.
![a\cdot b=(80)(50)\cos (\frac{3\pi}{4})](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D%2880%29%2850%29%5Ccos%20%28%5Cfrac%7B3%5Cpi%7D%7B4%7D%29)
![a\cdot b=4000\cos (\pi-\frac{\pi}{4})](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D4000%5Ccos%20%28%5Cpi-%5Cfrac%7B%5Cpi%7D%7B4%7D%29)
![[\because \cos (\pi-\theta)=-\cos \theta]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Ccos%20%28%5Cpi-%5Ctheta%29%3D-%5Ccos%20%5Ctheta%5D)
![a\cdot b=-4000\frac{1}{\sqrt{2}}](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D-4000%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D)
![a\cdot b=-\frac{4000}{\sqrt{2}}](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D-%5Cfrac%7B4000%7D%7B%5Csqrt%7B2%7D%7D)
Rationalize the above equation.
![a\cdot b=-\frac{4000}{\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}}](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D-%5Cfrac%7B4000%7D%7B%5Csqrt%7B2%7D%7D%5Ctimes%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%7B2%7D%7D)
![a\cdot b=-\frac{4000\sqrt{2}}{2}](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D-%5Cfrac%7B4000%5Csqrt%7B2%7D%7D%7B2%7D)
![a\cdot b=-2000\sqrt{2}](https://tex.z-dn.net/?f=a%5Ccdot%20b%3D-2000%5Csqrt%7B2%7D)
Therefore, the value of a · b is
.