Answer:
The height of the triangle is 7cm and the base is 16cm
Step-by-step explanation:
First of all we have to know the formula to calculate area of a triangle
a = area = 56
b = base
h = heigth
a = (b * h)/2
we replace the known values and we make 2 equations
56cm² = (b * h)/2
b = h + 9cm
we replace b by (h + 9cm) in the first equation
56cm² = (h + 9cm * h)/2
56cm² * 2 = h² + 9h
0 = h² + 9h - 112cm²
we use bhaskara formula:
(-b (±) √
(b² - 4ac) ) / 2a
we replace with the known values
h = (-9 (±) √
(9² - 4*1*(-112) ) ) / 2*1
h = (-9 (±) √
(81 + 448) ) ) / 2
h = (-9 (±) √529) /2
h = (-9 (±) 23)/2
h1 = (-9 + 23) / 2
h1 = 14 / 2
h1 = 7
h2 = (-9 - 23) / 2
h2 = -32 / 2
h2 = -16
The height of the triangle is 7cm and the base is 16cm
Is there a attachment because I don’t see anything
Answer:
Step-by-step explanation:
The quadrilateral has 4 sides and only two of them are equal.
A) to find PR, we will consider the triangle, PRQ.
Using cosine rule
a^2 = b^2 + c^2 - 2abcos A
We are looking for PR
PR^2 = 8^2 + 7^2 - 2 ×8 × 7Cos70
PR^2 = 64 + 49 - 112 × 0.3420
PR^2 = 113 - 38.304 = 74.696
PR = √74.696 = 8.64
B) to find the perimeter of PQRS, we will consider the triangle, RSP. It is an isosceles triangle. Therefore, two sides and two base angles are equal. To determine the length of SP,
We will use the sine rule because only one side,PR is known
For sine rule,
a/sinA = b/sinB
SP/ sin 35 = 8.64/sin110
Cross multiplying
SPsin110 = 8.64sin35
SP = 8.64sin35/sin110
SP = (8.64 × 0.5736)/0.9397
SP = 5.27
SR = SP = 5.27
The perimeter of the quadrilateral PQRS is the sum of the sides. The perimeter = 8 + 7 + 5.27 + 5.27 = 25.54 cm
Answer:
37x, 12
Step-by-step explanation:
Answer:
3 units.
Step-by-step explanation:
We can calculate the length, since it only moves on the "x" axis, since on the "y" axis, it remains the same.
We know that between -2 to 5, there are 7 units. 2 + 5 = 7.
Therefore this would be the length.
We know that the perimeter is equal to:
p = 2 * w + 2 * l
P = 20
20 = 2 * w + 2 * 7
2 * w = 20 - 14
w = 6/2
w = 3
therefore, the width value is 3 units.