The measure is 30° degrees
Answer:
a:c = 35:24
a:c = 20:27
a:c = 35:22
a:c = 28:27
Step-by-step explanation:
a:b = 7:3
Using cross products
3a = 7b
Divide by 7
3a/7 = b
Now we want
8b = 5c
Substitute in 3a/7 for b
8 (3a/7) = 5c
24/7a = 5c
Multiply by 7
24/7a *7 = 5*7c
24a = 35c
Divide by c
24 a/c = 35
Divide by 24
a/c = 35/24
a:c = 35:24
a:b = 4:9
Using cross products
9a = 4b
Divide by 4
9a/4 = b
Now we want
3b = 5c
Substitute in 9a/4 for b
3 (9a/4) = 5c
27/4a = 5c
Multiply by 4
27/4a *4 = 5*4c
27a = 20c
Divide by c
27 a/c = 20
Divide by 27
a/c = 20/27
a:c = 20:27
b:c = 5:11
Using cross products
11b = 5c
Divide by 11
b = 5c/11
Now we want
2a = 7b
Substitute in 5c/11 for b
2a = 7(5c/11)
2a = 35c/11
Multiply by 11
2a*11 = 35c
22a = 35c
Divide by c
22 a/c = 35
Divide by 22
a/c = 35/22
a:c = 35:22
b:c = 14:3
Using cross products
3b = 14c
Divide by 3
b = 14c/3
Now we want
9a = 2b
Substitute in 14c/3 for b
9a = 2(14c/3)
9a = 28c/3
Multiply by 3
9a*3 = 28c
27a = 28c
Divide by c
27 a/c = 28
Divide by 27
a/c = 28/27
a:c = 28:27
There is not enough information to determine whether the pentagons are congruent.
We know the width of the rectangle in the middle of the trapezoid is 24 (from the top of the image), so we can subtract that from the bottom width of the trapezoid to get the combined length of the bottom of both triangles.

Since this is an isosceles trapezoid, both triangle bases are the same length, so we can cut this value in half to get the length of
and 

Finally, we can use the Pythagorean Theorem to find the length of
:





Answer:
Step-by-step explanation:
Take original price divide by one hundred multiply that by percentage, subtract what you get from original price and that’s your sale price