1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
8

Y = sec θ tan θ differentiate

Mathematics
1 answer:
nikdorinn [45]3 years ago
8 0
Y = sec(θ) tan(θ).
 Solution:
 We use here the product rule that  is 
 (fg) 0 = f 0 g + fg0 .
 So
 y 0 = (sec(θ) tan(θ)) tan(θ) + sec(θ) tan2 (θ)
       = sec(θ)(tan2 (θ) + sec2 (θ)).
You might be interested in
What is the answer of 3m-10=2(4m-5)
mr_godi [17]
3m-10=2(4m-5)
3m-10=8m-10
3m-8m=-10+10
-5m=0
m=0
4 0
3 years ago
Read 2 more answers
Can I have some help
ipn [44]
Itd be 1, because the other ones aren’t possible
6 0
3 years ago
Determine whether the integral converges.
Kryger [21]
You have one mistake which occurs when you integrate \dfrac1{1-p^2}. The antiderivative of this is not in terms of \tan^{-1}p. Instead, letting p=\sin r (or \cos r, if you want to bother with more signs) gives \mathrm dp=\cos r\,\mathrm dr, making the indefinite integral equality

\displaystyle-\frac12\int\frac{\mathrm dp}{1-p^2}=-\frac12\int\frac{\cos r}{1-\sin^2r}\,\mathrm dr=-\frac12\int\sec r\,\mathrm dr=\ln|\sec r+\tan r|+C

and then compute the definite integral from there.

-\dfrac12\ln|\sec r+\tan r|\stackrel{r=\sin^{-1}p}=-\dfrac12\ln\left|\dfrac{1+p}{\sqrt{1-p^2}}=\ln\left|\sqrt{\dfrac{1+p}{1-p}}\right|
\stackrel{p=u/2}=-\dfrac12\ln\left|\sqrt{\dfrac{1+\frac u2}{1-\frac u2}}\right|=-\dfrac12\ln\left|\sqrt{\dfrac{2+u}{2-u}}\right|
\stackrel{u=x+1}=-\dfrac12\ln\left|\sqrt{\dfrac{3+x}{1-x}}\right|
\implies-\dfrac12\displaystyle\lim_{t\to\infty}\ln\left|\sqrt{\dfrac{3+x}{1-x}}\right|\bigg|_{x=2}^{x=t}=-\frac12\left(\ln|-1|-\ln\left|\sqrt{\frac5{-1}}\right|\right)=\dfrac{\ln\sqrt5}2=\dfrac{\ln5}4

Or, starting from the beginning, you could also have found it slightly more convenient to combine the substitutions in one fell swoop by letting x+1=2\sec y. Then \mathrm dx=2\sec y\tan y\,\mathrm dy, and the integral becomes

\displaystyle\int_2^\infty\frac{\mathrm dx}{(x+1)^2-4}=\int_{\sec^{-1}(3/2)}^{\pi/2}\frac{2\sec y\tan y}{4\sec^2y-4}\,\mathrm dy
\displaystyle=\frac12\int_{\sec^{-1}(3/2)}^{\pi/2}\csc y\,\mathrm dy
\displaystyle=-\frac12\ln|\csc y+\cot y|\bigg|_{y=\sec^{-1}(3/2}}^{y=\pi/2}
\displaystyle=-\frac12\lim_{t\to\pi/2^-}\ln|\csc y+\cot y|\bigg|_{y=\sec^{-1}(3/2)}^{y=t}
\displaystyle=-\frac12\left(\lim_{t\to\pi/2^-}\ln|\csc t+\cot t|-\ln\frac5{\sqrt5}\right)
=\dfrac{\ln\sqrt5}2-\dfrac{\ln|1|}2
=\dfrac{\ln5}4

Another way to do this is to notice that the integrand's denominator can be factorized.

x^2+2x-3=(x+3)(x-1)

So,

\dfrac1{x^2+2x-3}=\dfrac1{(x+3)(x-1)}=\dfrac14\left(\dfrac1{x-1}-\dfrac1{x+3}\right)

There are no discontinuities to worry about since you're integrate over [2,\infty), so you can proceed with integrating straightaway.

\displaystyle\int_2^\infty\frac{\mathrm dx}{x^2+2x-3}=\frac14\lim_{t\to\infty}\int_2^t\left(\frac1{x-1}-\frac1{x+3}\right)\,\mathrm dx
=\displaystyle\frac14\lim_{t\to\infty}(\ln|x-1|-\ln|x+3|)\bigg|_{x=2}^{x=t}
=\displaystyle\frac14\lim_{t\to\infty}\ln\left|\frac{x-1}{x+3}\right|\bigg|_{x=2}^{x=t}
=\displaystyle\frac14\left(\lim_{t\to\infty}\ln\left|\frac{t-1}{t+3}\right|-\ln\frac15\right)
=\displaystyle\frac14\left(\ln1-\ln\frac15\right)
=-\dfrac14\ln\dfrac15=\dfrac{\ln5}4

Just goes to show there's often more than one way to skin a cat...
7 0
3 years ago
Simplify 4^5/4^3 and show steps
BaLLatris [955]

Answer:

16

Step-by-step explanation:

4^5/4^3

4^5-3

4^2

16

Hope this helps :)

8 0
3 years ago
Gabriel makes a model of a pyramid with the dimensions shown. A square pyramid. The square base has side lengths of 12 inches. T
Blizzard [7]

Answer:

The area of the square base is 114 in. 2

The area of each triangular face is 66 in. 2

Gabriel will need 408 in. 2  of paint

8 0
3 years ago
Read 2 more answers
Other questions:
  • A family's lunch bill is $10.19 before tax and tip. Using the percents shown for sales tax and gratuity, how much money should t
    14·1 answer
  • If 35 is half of a set then what is the fraction of the whole set
    10·1 answer
  • If x varies inversely as p and x=2 when p=4 find the formula connecting them​
    5·1 answer
  • 1. Consider the following polar curve: r = 3 + 2 cos θ (a) Sketch the curve. (b) Find the area it encloses. (c) Set up an integr
    13·1 answer
  • Find the measure of angle 2. <br><br> 30°<br><br> 120°<br><br> 60°
    7·1 answer
  • What’s the answer to this
    6·1 answer
  • I already solved 1 and 2
    13·1 answer
  • I need plz help fast
    10·1 answer
  • How do I solve X+5=54
    12·2 answers
  • Given the graph below and the equation y = 4x, determine which function has the greatest rate of growth?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!