By devouring plants and eating different creatures that acquire carbon from sustenance.
Hydrogen atoms <span>24613 hope this helps
</span>
Answer:
A clock used to wake you up in the morning
The correct answer is 1) Evolutionary
Explanation:
The "good genes hypothesis" argues traits of the opposite sex that are considered as positive or attractive reflect evolutionary traits and therefore are indicators of a better-quality mate. Indeed, this theory argues attraction is connected to better chances of survival or better chances to reproduce. This belongs to the evolutionary approach in psychology because these "attractive" traits are the result of evolution because only the "fittest" individuals reproduce and their genes prevail over time.
Answer:
DNA may be taken up by bacterial cells and be active.
Explanation:
To understand Avery, MacLeod, and McCarty's experiment, it is important to know Frederick Griffith's precursor experiment. The microbiologist worked at the British Ministry of Health's Pathology Laboratory with pneumococci (commonly known as the bacterium Streptococcus pneumoniae, then known as Pneumococcus, which causes pneumonia), which were previously classified into several types. When cultured in petri dishes in the laboratory, the pneumococci that synthesize their capsules generate 'smooth' colonies. Subcutaneous injection of liquid culture of these pneumococci into mice causes their death. However, in vitro culture also allows the emergence of rough colonies', whose bacteria have lost the ability to synthesize mucopolysaccharide (and therefore have no capsules). Rough mutants could no longer be classified with sera and, moreover, lost their virulence: mice inoculated with them remained alive, unlike inoculated with smooth pneumococci.
The nature of Griffith's transforming principle remained unclear until the work of Avery, MacLeod, and McCarty. They repeated the in vitro transformation of pneumococci at the Rockfeller Institute for Medical Research, but replaced heat-dead cells with a purified fraction of smooth bacterial extract (unable to cause disease alone) and treated the material with different enzymes, each capable of destroying a specific type of macromolecule. Experience has shown that this fraction retained its transforming capacity when treated with protein or RNA degrading enzymes, but lost that ability when treated with DNA degrading enzymes. These results indicated that the chemical nature of the 'transforming principle' was DNA.
Thus, we can conclude that in addition to identifying genetic material, Avery, MacLeod and McCarty experiments with different strains of Streptococcus pneumoniae demonstrated that DNA can be absorbed by bacterial cells and be active.