Answer:
it is c
Step-by-step explanation:
<h3>
Answer:</h3>
(x, y) = (7, -5)
<h3>
Step-by-step explanation:</h3>
It generally works well to follow directions.
The matrix of coefficients is ...
![\left[\begin{array}{cc}2&4\\-5&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C-5%263%5Cend%7Barray%7D%5Cright%5D)
Its inverse is the transpose of the cofactor matrix, divided by the determinant. That is ...
![\dfrac{1}{26}\left[\begin{array}{ccc}3&-4\\5&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B26%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-4%5C%5C5%262%5Cend%7Barray%7D%5Cright%5D)
So the solution is the product of this and the vector of constants [-6, -50]. That product is ...
... x = (3·(-6) +(-4)(-50))/26 = 7
... y = (5·(-6) +2·(-50))/26 = -5
The solution using inverse matrices is ...
... (x, y) = (7, -5)
Answer:
40 degrees
Step-by-step explanation:
Look at the attachment
Answer:
none
Step-by-step explanation:
He is going to get double the amount becausehe is doing this over the weekend
Answer: see below
<u>Step-by-step explanation:</u>
The vertex form of a quadratic equation is: y = a(x - h)² + k where
- "a" is the vertical stretch (positive = min [U], negative = max [∩])
- (h, k) is the vertex
- Axis of Symmetry is always: x = h
- Domain is always: x = All Real Numbers
- Range is y ≥ k when "a" is positive or y ≤ k when "a" is negative
a) y = 2(x - 2)² + 5
↓ ↓ ↓
a= + h= 2 k= 5
Vertex: (h, k) = (2, 5)
Axis of Symmetry: x = h → x = 2
Max/Min: "a" is positive → minimum
Domain: x = All Real Numbers
Range: y ≥ k → y ≥ 5
b) y = -(x - 1)² + 2
↓ ↓ ↓
a= - h= 1 k= 2
Vertex: (h, k) = (1, 2)
Axis of Symmetry: x = h → x = 1
Max/Min: "a" is negative → maximum
Domain: x = All Real Numbers
Range: y ≤ k → y ≤ 2
c) y = -(x + 4)² + 0
↓ ↓ ↓
a= - h= -4 k= 0
Vertex: (h, k) = (-4, 0)
Axis of Symmetry: x = h → x = -4
Max/Min: "a" is negative → maximum
Domain: x = All Real Numbers
Range: y ≤ k → y ≤ 0
d) y = 1/3(x + 2)² - 1
↓ ↓ ↓
a= + h= -2 k= -1
Vertex: (h, k) = (-2, -1)
Axis of Symmetry: x = h → x = -2
Max/Min: "a" is positive → minimum
Domain: x = All Real Numbers
Range: y ≥ k → y ≥ -2