87. Because 3*3*3*3 is 81 and 570/6 is 95 and 87/7 is 12 R 3
We can solve this problem by using the distance formula. The distance formula is:
We can now put in values and solve.

These are two separate problems: in the first we will have to substitute in a new value for x into the original equation and in the second we will manipulate the preexisting equation for f(x).
To begin, we will sub in f(x/3). To do this, we will substitute each variable x in the equation (in this case there is only one) with x/3, and then simplify the resulting equation.
f(x) = 6x - 18
f(x/3) = 6(x/3) - 18
To simplify, we should distribute the 6 on the right side of the equation.
f(x/3) = 6x/3 - 18
Now, we can divide the first term on the right side to finalize our simplification.
f(x/3) = 2x -18
Secondly, we are asked to find f(x)/3. To do this, we will take our original value for f(x), and then simplify divide that entire function by 3.
f(x) = 6x - 18
f(x)/3 = (6x-18)/3
This means that we must divide each term of the binomial by 3, so we are really computing
f(x)/3 = 6x/3 - 18/3
We can simplify by dividing both of the terms.
f(x)/3 = 2x - 6
Therefore, your answer is that f(x/3) = 2x - 18, but f(x)/3 = 2x - 6. It is important to recognize that these are two similar, yet different, answers.
Hope this helps!
Answer:
Seven candy bars.
Explanation:
Suppose the number of candy bars purchased is x
The questions say he bought A magazine, means one magazine
the equation is:
4x + 5 = 33
4x = 33 – 5
4x = 28
x = 7
Kim bought 7 candy bars.
Hope this helps! :)
Answer:
252
Step-by-step explanation:
To be divisible by 3, it's digits have to add to a number that is a multiple of 3.
To be divisible by 4 its last 2 digits have to be divisible by 3.
So let's start with 1x1 which won't work because 1x1 is odd. so let's go to 2x2 and see what happens.
212 that's divisible by 4 but not 3
222 divisible by 3 but not 4
232 divisible by 4 but not 3
242 not divisible by either one.
252 I think this might be your answer
The digits add up to 9 which is a multiple of 3 and the last 2 digits are divisible by 4