Answer:
One of the sides is 6 cm and the other is 8 cm
Step-by-step explanation:
Let's call the unknown sides a and b. From the perimeter information (24 cm) we have:
a + b + hypotenuse = 24
a + b + 10 = 24
a + b = 14
b = 14 - a
So now we can right the Pythagorean theorem as follows:

and from this expression in factor form to be zero a must be 6 or a must be 8.
Therefore the solutions are a = 6 (and therefore b = 14 - 6 = 8)
or a = 8 (and therefore b = 14 - 8 = 6)
Circumference = 2πr
Since you know the diameter is 300, you divide it by 2 to find the radius. Therefore, the radius is 150.
Now plug it into the formula: C = 2(3.14)(150)
C = 942
Answer: Circumference is 942 feet
Hello,
Very nice as problem.
2 solutions:
1 quater,8 dimes, 2 pennies
and
3 quaters,3 dimes, 2 pennies
since
107=( 0, 0, 107) but : 100= 0*25+ 0*10+ 100
107=( 0, 1, 97) but : 100= 0*25+ 1*10+ 90
107=( 0, 2, 87) but : 100= 0*25+ 2*10+ 80
107=( 0, 3, 77) but : 100= 0*25+ 3*10+ 70
107=( 0, 4, 67) but : 100= 0*25+ 4*10+ 60
107=( 0, 5, 57) but : 100= 0*25+ 5*10+ 50
107=( 0, 6, 47) but : 100= 0*25+ 6*10+ 40
107=( 0, 7, 37) but : 100= 0*25+ 7*10+ 30
107=( 0, 8, 27) but : 100= 0*25+ 8*10+ 20
107=( 0, 9, 17) but : 100= 0*25+ 9*10+ 10
107=( 0, 10, 7) but : 100= 0*25+ 10*10+ 0
107=( 1, 0, 82) but : 100= 1*25+ 0*10+ 75
107=( 1, 1, 72) but : 100= 1*25+ 1*10+ 65
107=( 1, 2, 62) but : 100= 1*25+ 2*10+ 55
107=( 1, 3, 52) but : 100= 1*25+ 3*10+ 45
107=( 1, 4, 42) but : 100= 1*25+ 4*10+ 35
107=( 1, 5, 32) but : 100= 1*25+ 5*10+ 25
107=( 1, 6, 22) but : 100= 1*25+ 6*10+ 15
107=( 1, 7, 12) but : 100= 1*25+ 7*10+ 5
107=( 1, 8, 2) is good
107=( 2, 0, 57) but : 100= 2*25+ 0*10+ 50
107=( 2, 1, 47) but : 100= 2*25+ 1*10+ 40
107=( 2, 2, 37) but : 100= 2*25+ 2*10+ 30
107=( 2, 3, 27) but : 100= 2*25+ 3*10+ 20
107=( 2, 4, 17) but : 100= 2*25+ 4*10+ 10
107=( 2, 5, 7) but : 100= 2*25+ 5*10+ 0
107=( 3, 0, 32) but : 100= 3*25+ 0*10+ 25
107=( 3, 1, 22) but : 100= 3*25+ 1*10+ 15
107=( 3, 2, 12) but : 100= 3*25+ 2*10+ 5
107=( 3, 3, 2) is good
107=( 4, 0, 7) but : 100= 4*25+ 0*10+ 0