sin^2 x + 4 sinx +3 3 + sinx
-------------------------- = -------------------
cos^2 x 1 - sinx
factor the numerator
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
cos^2 x 1 - sinx
cos^2 = 1-sin^2x
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
1- sin^2x 1 - sinx
factor the denominator
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
(1-sinx ) (1+sinx) 1 - sinx
cancel the common term (1+sinx) and (sinx +1)
(sinx +3) 3 + sinx
-------------------------- = -------------------
(1-sinx ) 1 - sinx
reorder the first term
3+sinx 3 + sinx
-------------------------- = -------------------
(1-sinx ) 1 - sinx
The answer is 280,000 rounded to the nearest ten thousand.
Substitute x with the members of the domain.
f(x) = 5x² + 4
Substitute with the domain of -4
f(x) = 5x² + 4
f(-4) = 5(-4)² + 4
f(-4) = 5(16) + 4
f(-4) = 80 + 4
f(-4) = 84
Substitute with the domain of -2
f(x) = 5x² + 4
f(-2) = 5(-2)² + 4
f(-2) = 5(4) + 4
f(-2) = 20 + 4
f(-2) = 24
Substitute with the domain of 0
f(x) = 5x² + 4
f(0) = 5(0)² + 4
f(0) = 5(0) + 4
f(0) = 0 + 4
f(0) = 4
Substitute with the domain of 1.5
f(x) = 5x² + 4
f(1.5) = 5(1.5)² + 4
f(1.5) = 5(2.25) + 4
f(1.5) = 11.25 + 4
f(1.5) = 15.25
Substitute with the domain of 4
f(x) = 5x² + 4
f(4) = 5(4)² + 4
f(4) = 5(16) + 4
f(4) = 80 + 4
f(4) = 84
The range of the function for those domain is {4, 24, 15.25, 84}
The quadrilateral is a square
<h3>What are quadrilaterals?</h3>
Quadrilaterals are polygons, that have four sides and four corners
The coordinates are given as:
- A = (3, 5)
- B = (5, 2)
- C = (8, 4)
- D = (6, 7)
Start by calculating the adjacent side lengths using:

So, we have:




The side lengths are equal.
Hence, the quadrilateral is a square
Read more about quadrilaterals at:
brainly.com/question/5715879
Answer:
12 for the first one and 4 for the second one.
Step-by-step explanation:
I just took the test on ed.