Answer:
12083.929
Step-by-step explanation:
First step: find the mean of the data.
mean = <u>3</u><u>+</u><u>3</u><u>3</u><u>+</u><u>3</u><u>0</u><u>3</u><u>+</u><u>2</u><u>3</u><u>3</u><u>+</u><u>3</u><u>+</u><u>7</u><u>3</u><u>+</u><u>8</u><u>3</u><u>+</u><u>6</u><u>3</u>
8
= <u>7</u><u>9</u><u>4</u>
8
= 99.25
Second step: Now we calculate each dog's difference from the Mean.
Example : 3–99.25=96.25
Answer: (-96.25)+(-66.25)+203.75+133.75+(-96.25)+(-26.25)+(-16.25)+(36.25)
Third step: To calculate the Variance, take each difference, square it, and then average the result.
s² = <u>(-96.25)</u><u>²</u><u>+(-66.25)</u><u>²</u><u>+203.75</u><u>²</u><u>+133.75</u><u>²</u><u>+(-96.25)</u><u>²</u><u>+(-26.25)</u><u>²</u><u>+(-16.25)</u><u>²</u><u>+(36.25)</u><u>²</u>
8–1
=<u> </u><u>9</u><u>2</u><u>6</u><u>4</u><u>.</u><u>0</u><u>6</u><u>3</u><u>+</u><u>4</u><u>3</u><u>8</u><u>9</u><u>.</u><u>0</u><u>6</u><u>3</u><u>+</u><u>4</u><u>1</u><u>5</u><u>1</u><u>4</u><u>.</u><u>0</u><u>6</u><u>3</u><u>+</u><u>1</u><u>7</u><u>8</u><u>8</u><u>9</u><u>.</u><u>0</u><u>6</u><u>3</u><u>+</u><u>9</u><u>2</u><u>6</u><u>4</u><u>.</u><u>0</u><u>6</u><u>3</u><u>+</u><u>6</u><u>8</u><u>9</u><u>.</u><u>0</u><u>6</u><u>3</u><u>+</u><u>2</u><u>6</u><u>4</u><u>.</u><u>0</u><u>6</u><u>3</u><u>+</u><u>1</u><u>3</u><u>1</u><u>4</u><u>.</u><u>0</u><u>6</u><u>3</u>
7
=<u> </u><u>8</u><u>4</u><u>5</u><u>8</u><u>7</u><u>.</u><u>5</u>
7
= 12083.929
Variance Formula:
<u> </u><u> </u>
Variance = s² =<u>Σ(</u><u>x</u><u>i−</u><u> </u><u>x</u><u> </u><u>)</u><u>²</u>
n−1
An implication of p→ q, its contrapositive will be:
Not q→ Not p:
In our example the implication p→ q is p>q and is contrapositive is:
Not q > Not p
Answer:
D or 1 1/4
Step-by-step explanation:
Answer:
The equation would be y = -1/5x + 5
Step-by-step explanation:
To find the equation of this new line, we first need to identify the slope of the first line. We do this by putting it into slope intercept form.
x + 5y = 10
5y = -x + 10
y = -1/5x + 2
In slope-intercept form, the slope is always the coefficient of x. This makes the slope of the first equation -1/5. Since parallel lines have the same slope, our new slope will also be -1/5.
Given that and the point, we can solve for the equation using point-slope form.
y - y1 = m(x - x1)
y - 6 = -1/5(x + 5)
y - 6 = -1/5x - 1
y = -1/5x + 5