<span>I am assuming that this is a parametric curve.
We see that the curve intersects the x-axis when:
t - t^2 = 0 ==> t = 0 and t = 1.
Then, since x = 1 + e^t is an increasing function, the curve is being traced exactly once on the interval (0, 1).
Using the fact that the area under the curve given by the parametric equations x = f(t) and y = g(t) on (a, b) is:
A = ∫ f'(t)g(t) dt (from t=a to b),
and that f(t) = 1 + e^t ==> f'(t) = e^t, the area under the curve is:
A = ∫ e^t(t - t^2) dt (from t=0 to 1)
= e^t(-t^2 + 3t - 3) (evaluated from t=0 to 1), by integrating by parts
= e(-1 + 3 - 3) - (0 + 0 - 3)
= 3 - e. </span>
Estimate : 14 - 2 = 12......20 - 12 = 8
real thing :
13.59 - 1.85 = 11.74
20 - 11.74 = 8.26
Okay, this is my proof. I'm not exactly sure if this is a viable proof, but I think it works.


Hence, from x > 0, it is always increasing (gradient > 0)
y = lnx crosses the x-axis only once, so there is only one root.
Since x cannot be less than zero, as well as a monotonic increasing function for x > 0, and the fact that it crosses the x-axis once, then as x approaches 0 from the positive side, f(x) has to be approaching negative infinity.
447,163 / 34,000 = 13.151
13.151 • 34,000 = 447,163
Your answer is going to be 13.151
I believe the Correct answer is B if I’m right please mark me as brainliest