ANSWER
The volume of the mailing tube is 678.6 square inches to the nearest tenth.
EXPLANATION
The volume of a cylinder is calculated using the formula;

Since the mailing tube is in the form of a cylinder, we use this formula to find its volume.
We substitute h=24 and r=3 to obtain,



Answer:
1.85
Step-by-step explanation:
1.75-0.5+0.6= 1.85 or 1 17/20
so every time the phrase 'minimum' or 'maximum' show up in a problem with an equation, it means we need to do the math operation of taking the derivative.
make senes?can you find the derivative of the equation given?
4.1billion barrels in 2005
If parent functin is f(x)=|x|
it is moved to the left 2 units
vertically streched by a factor of 3
and moved up by 4 units in that order
because
to move a function to left c units, add c to every x
to vertically strech function by factor of c, multiply whole function by c
to move funciotn up c units, add c to whole function
so it is 2 to the left, verteically streched by a factor of 3 then moved up 4 units
The geometrical relationships between the straight lines AB and CD is that they are parallel to each other
<h3>How to determine the relationship</h3>
It is important to note the following;
- A drawn from the origin and passes through point A (a , b), then the equation of OA = ax + by
- If a line is drawn from the origin and passes through point B (c , d), then the equation of OB = cx + dy
We find the equation of AB by subtracting OB from OA, thus AB = (c - a)x + (d - b)y
The slope of line AB =
⇒ OA= 2 x + 9 y
⇒ OA = 4 x + 8 y
⇒AB = OB - OA
⇒AB = (4 x + 8 y) - (2 x + 9 y)
⇒ AB = 4 x + 8 y - 2 x - 9 y
Collect like terms
⇒ AB = (4 x - 2 x) + (8 y - 9 y)
⇒AB = 2 x + -y
⇒ AB = 2 x - y
⇒ Coefficient of x = 2
⇒ Coefficient of y = -1
⇒ The slope of ab =
= 2
For CD
⇒ CD = 4 x - 2 y
⇒Coefficient of x = -4
⇒ Coefficient of y = -2
⇒The slope of cd =
= 2
Note that Parallel lines have same slopes
And Slope of ab = slope of cd
AB // CD
Therefore, the geometrical relationships between the straight lines AB and CD is that they are parallel to each other
Learn more about parallel lines here:
brainly.com/question/24607467
#SPJ1