Answer:
Step-by-step explanation:
tan (60)=(sin 60)/cos 60=(√3/2)/(1/2)=√3≈1.732
Answer:
The gradient of the straight line that passes through (2, 6) and (6, 12) is
.
Step-by-step explanation:
Mathematically speaking, lines are represented by following first-order polynomials of the form:
(1)
Where:
- Independent variable.
- Dependent variable.
- Slope.
- Intercept.
The gradient of the function is represented by the first derivative of the function:

Then, we conclude that the gradient of the staight line is the slope. According to Euclidean Geometry, a line can be form after knowing the locations of two distinct points on plane. By definition of secant line, we calculate the slope:
(2)
Where:
,
- Coordinates of point A.
,
- Coordinates of point B.
If we know that
and
, then the gradient of the straight line is:



The gradient of the straight line that passes through (2, 6) and (6, 12) is
.
Answer:324
Step-by-step explanation:
int i = 42.7; /* konwersja z double do int */
float f = i; /* konwersja z int do float */
double d = f; /* konwersja z float do double */
unsigned u = i; /* konwersja z int do unsigned int */
f = 4.2; /* konwersja z double do float */
i = d; /* konwersja z double do int */
char *str = "foo"; /* konwersja z const char* do char* [1] */
const char *cstr = str; /* konwersja z char* do const char* */
void *ptr = str; /* konwersja z char* do void* */
Podcza