tis a little of plain differentiation.
we know the radius of the cone is decreasing at 10 mtr/mins, or namely dr/dt = -10, decreasing, meaning is negative.
we know the volume is decreasing at a rate of 1346 mtr/mins or namely dV/dt = -1346, also negative.
so, when h = 9 and V = 307, what is dh/dt in essence.
we'll be needing the "r" value at that instant, so let's get it

now let's get the derivative of the volume of the cone
![V=\cfrac{1}{3}\pi r^2 h\implies \cfrac{dV}{dt}=\cfrac{\pi }{3}\stackrel{product~rule}{ \left[ \underset{chain~rule}{2r\cdot \cfrac{dr}{dt}}\cdot h+r^2\cdot \cfrac{dh}{dt} \right]} \\\\\\ -1346=\cfrac{\pi }{3}\left[2\sqrt{\cfrac{307}{3\pi }}(-10)(9)~~+ ~~ \cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\right]](https://tex.z-dn.net/?f=V%3D%5Ccfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2%20h%5Cimplies%20%5Ccfrac%7BdV%7D%7Bdt%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cstackrel%7Bproduct~rule%7D%7B%20%5Cleft%5B%20%5Cunderset%7Bchain~rule%7D%7B2r%5Ccdot%20%5Ccfrac%7Bdr%7D%7Bdt%7D%7D%5Ccdot%20h%2Br%5E2%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5Cright%5D%7D%20%5C%5C%5C%5C%5C%5C%20-1346%3D%5Ccfrac%7B%5Cpi%20%7D%7B3%7D%5Cleft%5B2%5Csqrt%7B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%7D%28-10%29%289%29~~%2B%20~~%20%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cright%5D)
![-\cfrac{4038}{\pi }=-\cfrac{180\sqrt{307}}{\sqrt{3\pi }}+\cfrac{307}{3\pi } \cdot \cfrac{dh}{dt}\implies \left[ -\cfrac{4038}{\pi }+\cfrac{180\sqrt{307}}{\sqrt{3\pi }} \right]\cfrac{3\pi }{307}=\cfrac{dh}{dt} \\\\\\ -\cfrac{12114}{307}+\cfrac{180\sqrt{3\pi }}{\sqrt{307}}=\cfrac{dh}{dt}\implies -7.920939735970634 \approx \cfrac{dh}{dt}](https://tex.z-dn.net/?f=-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%3D-%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%2B%5Ccfrac%7B307%7D%7B3%5Cpi%20%7D%20%5Ccdot%20%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20%5Cleft%5B%20-%5Ccfrac%7B4038%7D%7B%5Cpi%20%7D%2B%5Ccfrac%7B180%5Csqrt%7B307%7D%7D%7B%5Csqrt%7B3%5Cpi%20%7D%7D%20%5Cright%5D%5Ccfrac%7B3%5Cpi%20%7D%7B307%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%20%5C%5C%5C%5C%5C%5C%20-%5Ccfrac%7B12114%7D%7B307%7D%2B%5Ccfrac%7B180%5Csqrt%7B3%5Cpi%20%7D%7D%7B%5Csqrt%7B307%7D%7D%3D%5Ccfrac%7Bdh%7D%7Bdt%7D%5Cimplies%20-7.920939735970634%20%5Capprox%20%5Ccfrac%7Bdh%7D%7Bdt%7D)
Answer:
510
Step-by-step explanation:
divide into chunks. I divided it like how you would draw the equal sign.
for top chunk, 20*8=160
for 2nd chunk, 8*25=200
for the last chunk, 15*10=150
add up 160, 200, and 150
Answer:
EG = 16 and FH =22
Step-by-step explanation:
We know that the diagonals of a parallelogram bisect each other
so 2a = 3b+2
and 2a+3 = 6b-1
We know have a system of equations to solve
2a = 3b+2
2a+3 = 6b-1
Subtract 3 from each side
2a+3-3 = 6b-1-3
2a = 6b -4
Now we can set the 2 equations equal ( 2a = 3b+2 and 2a = 6b -4)
3b+2 = 6b-4
Subtract 3b from each side
3b-3b+2 = 6b-3b-4
2 = 3b-4
Add 4 to each side
2+4 = 3b-4+4
6 = 3b
Divide by 3
6/3 = 3b/3
2 =b
We want to find a
2a = 3b+2
Substitute in b=2
2a = 3(2) + 2
2a = 6+2
2a =8
Divide by 2
2a/2 =8/2
a = 4
Now that we know a and b
EG = 2a + 3b+2
= 2(4) + 3(2)+2
= 8+6+2
= 16
FH = 2a+3 + 6b-1
= 2(4) +3 +6(2)-1
= 8+3+12-1
= 23-1
= 22
(-4)(-2)= 8
8(-5)= -40
Answer: -40
Answer:
6765201
Step-by-step explanation:
(5.1*10)^4
51^4
6765201 (USED CALCULATOR)