Answer:
7.5 L of 10% solution and 22.5 L of 30% solution
Step-by-step explanation:
Volume of 10% solution plus volume of 30% solution = total volume of 25% volume.
x + y = 30
Acid in 10% solution plus acid in 30% solution = total acid in 25% solution.
0.10 x + 0.30 y = 30 × 0.25
0.10 x + 0.30 y = 7.5
Solve the system of equations, using either substitution or elimination. I'll use substitution:
x = 30 − y
0.10 (30 − y) + 0.30 y = 7.5
3 − 0.10 y + 0.30 y = 7.5
0.20 y = 4.5
y = 22.5
x = 30 − y
x = 7.5
Sarah needs 7.5 L of 10% solution and 22.5 L of 30% solution.
Answer:
(0, -3)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Coordinates (x, y)
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
6x - 5y = 15
x = y + 3
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 6(y + 3) - 5y = 15
- Distribute 6: 6y + 18 - 5y = 15
- Combine like terms: y + 18 = 15
- [Subtraction Property of Equality] Subtract 18 on both sides: y = -3
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define original equation: x = y + 3
- Substitute in <em>y</em>: x = -3 + 3
- Add: x = 0
1.) expand
3x - 15 - 5x = 25 + 6x
2.) simplify
-2x - 15 = 25 + 6x
3.) add 2x to both sides
-15 = 25 + 6x + 2x
4.) simplify
-15 = 25 + 8x
5.) subtract 25 from both sides
-15 - 25 = 8x
6.) simplify -15 - 25 to -40
-40 = 8x
7.) divide both sides by 8
-40/8 = x
8.) x = -5
Answer:
.26 = 26% hope this helps! :)
Step-by-step explanation:
.26
100 = 1.00
26 = .26
you just move the decimal point over 2