It has not been indicated whether the figure in the questions is a triangle or a quadrilateral. Irrespective of the shape, this can be solved. The two possible shapes and angles have been indicated in the attached image.
Now, from the information given we can infer that there is a line BD that cuts angle ABC in two parts: angle ABD and angle DBC
⇒ Angle ABC = Angle ABD + Angle DBC
Also, we know that angle ABC is 1 degree less than 3 times the angle ABD, and that angle DBC is 47 degree
Let angle ABD be x
⇒ Angle ABC = 3x-1
Also, Angle ABC = Angle ABD + Angle DBC
Substituting the values in the above equations
⇒ 3x-1 = x+47
⇒ 2x = 48
⇒ x = 24
So angle ABD = 24 degree, and angle ABC = 3(24)-1 = 71-1 = 71 degree
40%=0.4
15*0.4
6
15-6
9 darts didn't hit the bull's eye
Answer:
d. The histogram would be approximately bell-shaped, and the normal quantile plot would have data points have follow a straight-line pattern.
Step-by-step explanation:
Since the variable is normally distributed, the histogram of women's height should be approximately bell shaped (if the data was obtained form a random sample).
Again, the variable is normally distributed, therefore, the quantile plot should follow a straight line pattern (a diagonal line to be more precise).
Distributionally robust stochastic programs with side information based on trimmings
This is a research paper whose authors are Adrián Esteban-Pérez and Juan M. Morales.
Abstract:
- We look at stochastic programmes that are conditional on some covariate information, where the only knowledge of the possible relationship between the unknown parameters and the covariates is a limited data sample of their joint distribution. We build a data-driven Distributionally Robust Optimization (DRO) framework to hedge the decision against the inherent error in the process of inferring conditional information from limited joint data by leveraging the close relationship between the notion of trimmings of a probability measure and the partial mass transportation problem.
- We demonstrate that our technique is computationally as tractable as the usual (no side information) Wasserstein-metric-based DRO and provides performance guarantees. Furthermore, our DRO framework may be easily applied to data-driven decision-making issues involving tainted samples. Finally, using a single-item newsvendor problem and a portfolio allocation problem with side information, the theoretical findings are presented.
Conclusions:
- We used the relationship between probability reductions and partial mass transit in this study to give a straightforward, yet powerful and creative technique to expand the usual Wasserstein-metric-based DRO to the situation of conditional stochastic programming. In the process of inferring the conditional probability measure of the random parameters from a limited sample drawn from the genuine joint data-generating distribution, our technique generates judgments that are distributionally resilient to uncertainty. In a series of numerical tests based on the single-item newsvendor issue and a portfolio allocation problem, we proved that our strategy achieves much higher out-of-sample performance than several current options. We backed up these actual findings with theoretical analysis, demonstrating that our strategy had appealing performance guarantees.
To learn more about probability, visit :
brainly.com/question/11234923
#SPJ4
THE ANSWER IS B! YOUR WELCOME!