1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
15

A sequence is defined recursively by the formula f(n+1) =f(n) + 3 the first term of the sequences is -4 what is the next term in

the sequence
Mathematics
1 answer:
MArishka [77]3 years ago
8 0
-1 would be your answer. f(0) = -4. f(1) = f(0)+3 so f(1) = -1
You might be interested in
What is the approximate area of a circle with a radius of 4 feet? Use 3.14
Eva8 [605]

Answer:

≈ 50 ft²

Step-by-step explanation:

<u>Area of circle:</u>

  • A = πr²

<u>Given:</u>

  • r = 4 ft, π = 3.14

<u>Then:</u>

  • A= 3.14 * 4² = 50.24 ≈ 50 ft²
8 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Give two ways to write each algebraic expression in words. 4+×
KATRIN_1 [288]

Answer:

the sum of 4 and a number

4 plus a number

4 0
3 years ago
X - y= -4 -2x +3y =6
STatiana [176]

Answer:

<em><u>x=-6, y=-2</u></em>, (As a point) (-6, -2).....The point form is not necessary unless you want to solve the system (of equations) by graphing.

Step-by-step explanation:

By substitution:

x-y=-4    By adding y on both sides,

x=y-4

Now you can substitute x for the expression (y-4)

Plug the (y-4) as x in the other equation.

So -2x+3y=6 becomes

-2(y-4)+3y=6

Now solve:

-2(y-4)+3y=6 distributes out to be

-2y+8+3y=6     Now combining like terms

y+8=6              Subtract 8 on both sides to isolate the variable

<u><em>y=-2</em></u>

Now plug the value -2 in where the y is in any equation (preferably the easier/less complicated one) and solve for x.

So x-y=-4 becomes

x-(-2)=-4

=x+2=-4

=<u><em>x=-6</em></u>

3 0
3 years ago
a rental car agency charges $210.00 per week plus $0.15 per mile to rent a car. how many miles can you travel in one week for $2
max2010maxim [7]
$291-$210=$81
$81/0.15= 540 miles
I believe the answer is 540 mi.
7 0
3 years ago
Other questions:
  • The length of the football field is 10x+10 and the width is 4x+20. Write a polynomial that represents the are of the football fi
    5·1 answer
  • A disco ball is shaped like a sphere with a diameter of 16 inches. To the nearest square inch, what is the surface of the disco
    13·1 answer
  • What is the slope of the line that contains the points (3,1) and (2,-3)
    11·1 answer
  • How many ways are there to travel in xyz space from the origin (0, 0, 0) to the point (4, 3, 5) by taking steps one unit in the
    6·1 answer
  • Minding ran 4,506 meters on Monday and 2,549 meters on Tuesday. How many more meters did she run on Monday than on Tuesday?
    7·1 answer
  • Compute the perimeter of the rectangle using the distance formula. (round to the nearest integer)
    11·2 answers
  • How do you solve the indicated variable?<br> 6=mx+b for x
    8·2 answers
  • HELPP ASAP PLEASE, WILL GIVE BRAINLIEST !!!!!
    15·1 answer
  • Alyssa buys a carton of 12 eggs for $1.80. Which is the cost per egg?
    11·2 answers
  • Differentiate y = tan²x from first principle​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!