Answer:
![\huge{x = \frac{236164}{9477} = 24 \frac{8716}{9477}}](https://tex.z-dn.net/?f=%5Chuge%7Bx%20%3D%20%20%5Cfrac%7B236164%7D%7B9477%7D%20%20%3D%2024%20%5Cfrac%7B8716%7D%7B9477%7D%7D%20)
Step-by-step explanation:
![(81) - 4 \div (729)2 - x = \frac{9}{4} x](https://tex.z-dn.net/?f=%2881%29%20-%204%20%5Cdiv%20%28729%292%20-%20x%20%3D%20%20%5Cfrac%7B9%7D%7B4%7D%20x)
![81 - \frac{4}{729} \times 2 - x = \frac{9}{4} x](https://tex.z-dn.net/?f=81%20-%20%20%5Cfrac%7B4%7D%7B729%7D%20%20%5Ctimes%202%20-%20x%20%3D%20%20%5Cfrac%7B9%7D%7B4%7D%20x)
![81 - \frac{8}{729} - x = \frac{9}{4} x](https://tex.z-dn.net/?f=81%20-%20%20%5Cfrac%7B8%7D%7B729%7D%20%20-%20x%20%3D%20%20%5Cfrac%7B9%7D%7B4%7D%20x)
![\frac{59041}{729} - x = \frac{9}{4} x](https://tex.z-dn.net/?f=%20%5Cfrac%7B59041%7D%7B729%7D%20%20-%20x%20%3D%20%20%5Cfrac%7B9%7D%7B4%7D%20x)
![236164 - 2916x = 6561x](https://tex.z-dn.net/?f=236164%20-%202916x%20%3D%206561x)
![- 2916x - 6561x = - 236164](https://tex.z-dn.net/?f=%20-%202916x%20-%206561x%20%3D%20%20-%20236164)
![- 9477x = - 236164](https://tex.z-dn.net/?f=%20-%209477x%20%3D%20%20-%20236164)
![\boxed{\green{x = \frac{236164}{9477} = 24 \frac{8716}{9477}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cgreen%7Bx%20%3D%20%20%5Cfrac%7B236164%7D%7B9477%7D%20%20%3D%2024%20%5Cfrac%7B8716%7D%7B9477%7D%7D%7D%20)
Answer: The correct option is (B) 3.
Step-by-step explanation: We are given a circle X with radius 5 units and chord AB with length 8 units.
We are to find the length of segment XC that bisects chord.
We know that the line segment drawn from the center of a circle to the midpoint of a chord is perpendicular to the chord.
So, in the given circle X, the segment XC is perpendicular to chord AB. Then, triangle XCB will be a right angled triangle with hypotenuse XB.
Since XC bisects AB, so the length of BC will be
![BC=\dfrac{AB}{2}=\dfrac{8}{2}=4~\textup{units}.](https://tex.z-dn.net/?f=BC%3D%5Cdfrac%7BAB%7D%7B2%7D%3D%5Cdfrac%7B8%7D%7B2%7D%3D4~%5Ctextup%7Bunits%7D.)
And, radius, XB = 5 units.
Using Pythagoras theorem in triangle XCB, we have
![XB^2=XC^2+BC^2\\\\\Rightarrow XC^2=XB^2-BC^2\\\\\Rightarrow XC^@=5^2-4^2\\\\\Rightarrow XC^2=9\\\\\Rightarrow XC^2=3^2\\\\\Rightarrow XC=3.](https://tex.z-dn.net/?f=XB%5E2%3DXC%5E2%2BBC%5E2%5C%5C%5C%5C%5CRightarrow%20XC%5E2%3DXB%5E2-BC%5E2%5C%5C%5C%5C%5CRightarrow%20XC%5E%40%3D5%5E2-4%5E2%5C%5C%5C%5C%5CRightarrow%20XC%5E2%3D9%5C%5C%5C%5C%5CRightarrow%20XC%5E2%3D3%5E2%5C%5C%5C%5C%5CRightarrow%20XC%3D3.)
Thus, the length of the segment XC is 3 units.
Option (B) is CORRECT.
Answer:
6x+25
Step-by-step explanation: