<span>Constraints (in slope-intercept form)
x≥0,
y≥0,
y≤1/3x+3,
y</span>≤ 5 - x
The vertices are the points of intersection between the constraints, or the outer bounds of the area that agrees with the constraints.
We know that x≥0 and y≥0, so there is one vertex at (0,0)
We find the other vertex on the y-axis, plug in 0 for x in the function:
y <span>≤ 1/3x+3
y </span><span>≤1/3(0)+3
y = 3.
There is another vertex at (0,3)
Find where the 2 inequalities intersect by setting them equal to each other
(1/3x+3) = 5-x Simplify Simplify Simplify
x = 3/2
Plugging in 3/2 into y = 5-x: 10/2 - 3/2 = 7/2
y=7/2
There is another vertex at (3/2, 7/2)
There is a final vertex where the line y=5-x crosses the x axis:
0 = 5 -x , x = 5
The final vertex is at point (5, 0)
Therefore, the vertices are:
(0,0), (0,3), (3/2, 7/2), (5, 0)
We want to maximize C = 6x - 4y.
Of all the vertices, we want the one with the largest x and smallest y. We might have to plug in a few to see which gives the greatest C value, but in this case, it's not necessary.
The point (5,0) has the largest x value of all vertices and lowest y value.
Maximum of the function:
C = 6(5) - 4(0)
C = 30</span>
Answer:
.
.
Step-by-step explanation:
Let
,
, and
be scalars such that:
.
.
.
The question states that
. In other words:
.
.
.
Make use of the fact that
whereas
.
.
.
The question also states that the scalar multiple here is positive. Hence,
.
Therefore:
.
could also be expressed in terms of
and
:
.
.
Equate the two expressions and solve for
and
:
.
.
Hence:
.
.
Okay so rounding to the ten thousand will mean you are looking at the 3 and looking behind it, the 4 is behind the 3 in 34,699 and 0-4 we round down so the nearest 10,000 is 30,000. ANSWER: 30,000
1.) 240 divided by 16.
2.) 15
The width of the bedroom is 15 feet.
I hope this helps, please Brainliest me, and have a wonderful night! :D
Answer:
They are compatible
Step-by-step explanation:
The first thing is to say that an "ace" and that it is a "coarse"
"ace" is card number 1. Group A
"coarse" is a type of the deck, found from number 1 to card 13. Group B
Thus:
Calculate A U B:
1 to 13 + 1 of the other types of cards in the deck.
At intersection B:
1 of "coarse"
Therefore, if group A is compatible with group B