Answer:
The type of mutation that occurs when in the DNA strand there is a change from guanine to cytosine is a nonsense mutation, since the triplet that should encode the amino acid encodes a stop codon and the protein cannot be completely synthesized.
Explanation:
The nonsense mutation consists of a change in one of the bases of the stranded DNA, which is transcribed into an altered mRNA, producing a stop codon, instead of an amino acid.
In the table it is observed that the CCA codon is a stop codon that cuts off the protein synthesis prematurely, leaving it incomplete and probably non-functional.
Sometimes this type of mutation can alter the sequence of amino acids but the protein may be complete enough to partially fulfill its function.
Answer:
A)100mL B)50mL C)The second option D)Hypoosmotic Environment
Explanation:
The average Na concentration in the seas and oceans of the world is around 3,5% which mean that in 100 ml of sea water, there is around 3,5 grams of Na.
The weight of one mol of NaCl is 58,44 grams. For 3,5 grams of NaCl, we get 3,5/58,44 = 0,060 mol of NaCl which is 0,060x1000 = 60 mmol/100ml. According to this and the information given in the question about the secretion of the salt glands', if the average sodium concentration is 600mmol/L, we have 60*10 = 600mmol/L so it would take 100 mililiters of water to excrete.
If the average Na concentration of the salt gland's secretion were 300 mmol/L, only 50 mililiters of water would be needed to excrete the same sodium load.
The second option of secretion is hyperosmotic to seawater because the concentration is higher.
Osmoregulation is the process of balancing the amount of water and salt between the body of the organism and its surrounding environment. For salt glands to be advantageous for osmoregulation, they need to be in a hypoosmotic environment.
I hope this answer helps.
Answer:
(B) open stomata only at night, limiting water loss because of heat and low humidity.
Explanation:
CAM plants are found in the regions characterized by very hot and dry environmental conditions. These plants reduce the water loss through transpiration by exhibiting CAM photosynthesis.
They open the stomata during night time when the air is cooler and rich in moisture. They take in CO2 during night time and fix it into the oxaloacetate which in turn is converted into malate and is stored in the vacuoles.
During day time, stomata remain closed to prevent water loss and the CO2 trapped during night time (released by decarboxylation of malate) enter the Calvin cycle.
Fatigue can have causes that aren't due to underlying disease. Examples include lack of sleep, heavy exertion, jetlag, a large meal, or aging.