Answer:
this becomes 1/2 * 6 * tan(10) * 3 which results in the area of one of the isosceles triangles is equal to 1.586942826 square units. since there are 18 of these isosceles triangles in the polygon, then multiply this by 18 to get area of the polygon with 18 sides is equal to 28.56497087 square units.
Follow me please
Mark brainliest
For this case we have a quadratic equation,
, of the form 
Where:

We can solve the equation by factoring, that is, we bias two numbers that multiplied give as a result -60 and added as a result 28.
These numbers are:

Then, the factorization is given by:

The roots are:

Answer:

9/20
A percentage is the same as showing a number over 100 and if we multiply 20 by 5 we get 100. So if we multiply 9 by 5 we get 45, giving us 45/100 which can be shown as 45%.
As a decimal, well if we say 100% equals 1.0, then 45% equals 0.45
the perimeter will then just be the sum of the distances of A, B and C, namely AB + BC + CA.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\qquadB(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad \qquadd = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}\\\\\\AB=\sqrt{[0-(-2)]^2+[5-(-2)]^2}\implies AB=\sqrt{(0+2)^2+(5+2)^2}\\\\\\AB=\sqrt{4+49}\implies \boxed{AB=\sqrt{53}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\B(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad C(\stackrel{x_1}{3}~,~\stackrel{y_1}{1})\\\\\\BC=\sqrt{(3-0)^2+(1-5)^2}\implies BC=\sqrt{3^2+(-4)^2}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%5C%5CA%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5CqquadB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquadd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B%5B0-%28-2%29%5D%5E2%2B%5B5-%28-2%29%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B%280%2B2%29%5E2%2B%285%2B2%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B4%2B49%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B53%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_1%7D%7B3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5C%5C%5C%5C%5C%5CBC%3D%5Csqrt%7B%283-0%29%5E2%2B%281-5%29%5E2%7D%5Cimplies%20BC%3D%5Csqrt%7B3%5E2%2B%28-4%29%5E2%7D)
![\bf BC=\sqrt{9+16}\implies \boxed{BC=5}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\C(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\\\\\\CA=\sqrt{(-2-3)^2+(-2-1)^2}\implies CA=\sqrt{(-5)^2+(-3)^2}\\\\\\CA=\sqrt{25+9}\implies \boxed{CA=\sqrt{34}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\~\hfill \stackrel{AB+BC+CA}{\approx 18.11}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20BC%3D%5Csqrt%7B9%2B16%7D%5Cimplies%20%5Cboxed%7BBC%3D5%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CC%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B%28-2-3%29%5E2%2B%28-2-1%29%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B%28-5%29%5E2%2B%28-3%29%5E2%7D%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B25%2B9%7D%5Cimplies%20%5Cboxed%7BCA%3D%5Csqrt%7B34%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C~%5Chfill%20%5Cstackrel%7BAB%2BBC%2BCA%7D%7B%5Capprox%2018.11%7D~%5Chfill)
The answer is: c
Explination 30-9=21