Answer:
Step-by-step explanation:
Given that,
Sin(x) = -x, in third quadrant
Let find Cos(x) from
Sin²x + Cos²x = 1
(-x)² + cos²x = 1
x² + cos² = 1
Cos²x = 1 - x²
Cos(x) = ±√(1-x²)
Note that, at third quadrant, only tangent is positive
Then, since cosine is negative at the third quadrant,then,
Cos(x) = -√(1-x²)
So,
We want to find
1. Sin(2x) = 2Sin(x)Cos(x)
Sin(2x) = 2 × -x × -√(1-x²)
- × - = +
Sin(2x) = 2x√(1-x²)
2. Cos(2x)?
Cos(2x) = Cos²x - Sin²x
Cos(2x) = (-√(1-x²)² - (-x)²
Cos(2x) = 1 - x² - x²
Cos(2x) = 1 - 2x²
3. Tan(2x)?
From tan relationship
Tan(2x) = Sin(2x) / Cos(2x)
Then,
Tan(2x) = 2x√(1-x²) / (1 - 2x²)