Answer:
<h2>The volume of water in the vase is 339.33 in^3</h2>
Step-by-step explanation:
To calculate the volume of water in the vase we need the following parameters
1. the diameter/radius of the vase
2. the height /level of water in the vase
Given data
diameter d= 6 in
radius = d/2= 6/2 = 3 in
height of water h= 12 in
we know that the expression for the volume of a cylinder is given as

Inserting our data we have

<em>x</em>/<em>r</em> + <em>x</em>/<em>w</em> + <em>x</em>/<em>t</em> = 1
<em>x</em> (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>) = 1
<em>x</em> = 1 / (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>)
To make the solution a bit cleaner, multiply through the numerator and denominator by the LCM of each fraction's denominator, <em>rwt</em> :
<em>x</em> = 1 / (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>) • <em>rwt</em> / <em>rwt</em>
<em>x</em> = <em>rwt</em> / (<em>rwt</em>/<em>r</em> + <em>rwt</em>/<em>w</em> + <em>rwt</em>/<em>t</em>)
<em>x</em> = <em>rwt</em> / (<em>wt</em> + <em>rt</em> + <em>rw</em>)
Answer : 424.875 miles
The problem states that Brian can travel ‘27.5’ miles per gallon, and his tank can only hold ‘15.45’ gallons of fuel.
To find the miles he can travel, all you have to do is multiply the miles he can travel per gallon (27.5) by the gallons he has in the tank (15.45).
This gives you the answer of 424.875 miles.
Answer:
<em>Tim </em><em>will </em><em>get </em><em>£</em><em> </em><em>8</em>
<em>Sam </em><em>will </em><em>get </em><em>£</em><em> </em><em>3</em><em>2</em>
<em>Solution,</em>
<em>let </em><em>the </em><em>ratios </em><em>be </em><em>x </em><em>and </em><em>4</em><em>x</em>
<em>
</em>
<em>hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>
*Hint: Before you try to factor anything, you try to see if they have a common factor.
Since -3 is a common factor, everything is divided by -3.
-6x^4y^5 - 15x^3y^2 + 9x^2y^3
-3(2x^4y^5 + 5x^3y^2 - 3x^2y^3)
Since you can still divide by x^2y^2, you do so.
-3x^2y^2 (2x^2y^3 + 5x - 3y)