The correct answer is optionD 134/200.
The frequency of the dominant allele can be calculated by the summation of the frequency of the homozygous individual frequency that has dominant allele and half of the heterozygous individuals, as half of the heterozygotes have dominant allele.
The frequency is no of individual of desired trait divided by total number of individual.
The calculation is shown below:
Answer:
The ratio of blue to white offspring in the progeny is 4 blue : 12 white.
Explanation:
<u>Available data:</u>
- The dominant allele K is necessary to synthesize blue flower pigment
- K is inhibited by the dominant allele D
- Plants with the genotype K- D- will not produce pigment (and their flowers will be white)
Cross: testcross for (Kk Dd) plants
Parental) KkDd x kkdd
Gametes) KD kD Kd kd
kd kd kd kd
Punnet square) KD Kd kD kd
kd KkDd Kkdd kkDd kkdd
kd KkDd Kkdd kkDd kkdd
kd KkDd Kkdd kkDd kkdd
kd KkDd Kkdd kkDd kkdd
- Whenever D is present, it inhibits the expression of the K gene, so every plant with the dominant D allele will be white. This plants´ genotype is kkD- or K-D-.
- Whenever D is absent and K is present, every plant with genotype K-dd will be blue.
- The recessive form for K and D genes will express white-flowered plants, with genotype ddkk
F1) Progeny genotype: 4/16 KkDd, white-flowered plants
4/16 Kkdd, blue-flowered plants
4/16 kkDd, white-flowered plants
4/16 kkdd, white-flowered plants
The ratio of blue to white offspring in the progeny is 4 blue : 12 white.
Blue-flowered plants: 4 Kkdd
White-flowered plants: 4 KkDd + 4 kkDd + 4 kkdd
A the answer is a.............
Answer:
hope it helps
Explanation:
The heaviest element found in any appreciable amount in nature is uranium, atomic number 92. (The atomic number refers to the number of protons in an atom's nucleus.) Beyond that, scientists must create new elements in accelerators, usually by smashing a beam of light atoms into a target of heavy atoms.