Ordered pairs that work for this direct variation are (4, 3), (8, 6) and (12, 9).
In order to find these, we must first find the value of the direct variation coefficient. We can do that using the base equation y = kx and then by plugging in to find k.
y = kx
12 = k(16)
3/4 = k
Now that we have k, we can model the equation as y = 3/4x. We can also find any number of ordered pairs by using the x value and finding the y value. All of the above answers work.
Answer:
y = (3/4)x + 2
Step-by-step explanation:
Slope-intercept form is y=mx+b where (x, y) is a point on the linear graph, m is the slope (rise/run), and b is the y-intercept (the y-value at which the graph passes through the y-axis).
Looking at the graph, we can see that the point at which the line crosses the y-axis is (0, 2) which makes it the y-intercept. Thus, the b in the slope-intercept form is 2.
Next, we are looking for the slope of the line. To do this, we can calculate the rise/run of the line by choosing to points on it. Since we already have the point (0, 2), we just need one more.
For example, the point (-4, -1) can be used. The slope can be found by ((y-y)/(x-x)) in which the first y and x values correspond with the first point and that of the second correspond with the second set. So in this case, m = (2-(-1))/(0-(-4)) = 3/4
Plugging in the calculated m and b value in the slope intercept equation, we get y = (3/4)x + 2
Answer:
Step-by-step explanation:
Assuming the decay factor, m = 0.0005
f(x) = 
f(9000) =
= 1 - 0.0111 = 0.99
Answer:
hope it may help but I wasnt able to find y cause no question